A MENGER-LIKE PROPERTY OF TREE-WIDTH - THE FINITE CASE

被引:33
作者
THOMAS, R
机构
[1] UNIV READING,READING RG6 2AH,BERKS,ENGLAND
[2] CHARLES UNIV,DEPT MATH ANAL,CS-18600 PRAGUE 8,CZECHOSLOVAKIA
关键词
D O I
10.1016/0095-8956(90)90130-R
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of tree-width was introduced by Robertson and Symour. A graph has tree-width ≦ w if it admits a tree-decomposition of tree-width ≦ w. We prove here that if G is finite and has tree-width ≦ w then it admits a tree-decomposition of tree-width ≦ w which satisfies a certain Menger-like condition. This result will be used in a future paper on well-quasi-ordering infinite graphs of bounded tree-width. © 1990.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 5 条
[1]  
KRIZ I, UNPUB MENGER LIKE PR
[2]   GRAPH MINORS .5. EXCLUDING A PLANAR GRAPH [J].
ROBERTSON, N ;
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (01) :92-114
[3]  
ROBERTSON N, IN PRESS J COMBIN B
[4]   WELL-QUASI-ORDERING INFINITE-GRAPHS WITH FORBIDDEN FINITE PLANAR MINOR [J].
THOMAS, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 312 (01) :279-313
[5]  
THOMAS R, UNPUB TREE WIDTH COM