Bayesian estimation of the mean of an autoregressive process

被引:6
作者
Broemeling, Lyle D. [1 ]
Cook, Peyton [2 ]
机构
[1] Univ Texas Med Branch, Galveston, TX USA
[2] Univ Tulsa, Tulsa, OK 74104 USA
关键词
D O I
10.1080/02664769300000003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The marginal posterior probability density function (pdf) for the mean of a stationary pth order Gaussian autoregressive process is derived using the conditional likelihood function. While the posterior pdf provides a small sample analysis, the pdf is not well known and must be analyzed numerically. This is relatively easy since it is a function of only one variable. Two sets of examples are presented. The first set involves synthetic data generated by computer, and the second set deals with energy expenditure data on a burn patient.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 21 条
[1]  
ANDERSON T.W., 1971, STAT ANAL TIME SERIE
[2]  
[Anonymous], 1988, TIMESLAB TIME SERIES
[3]  
[Anonymous], 1989, BAYESIAN FORECASTING
[4]  
Bartlett M.S., 1955, INTRO STOCHASTIC PRO
[5]  
Blackman RB, 1959, MEASUREMENT POWER SP
[6]  
Box G.E., 1976, TIME SERIES ANAL
[7]  
Box GEP., 1973, BAYESIAN INFERENCE S
[8]  
Brillinger DR., 1975, TIME SERIES DATA ANA
[9]  
Broemeling L., 1988, BAYESIAN ANAL TIME S, P1
[10]  
Choy JHC, 1977, THESIS OKLAHOMA STAT