HARMONIC AND MUSICAL WAVELETS

被引:95
作者
NEWLAND, DE
机构
来源
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1994年 / 444卷 / 1922期
关键词
D O I
10.1098/rspa.1994.0042
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The concept of a harmonic wavelet is generalized to describe a family of mixed wavelets with the structure w(m, n)(x) = {exp (in2pix) - exp (im2pix)}/i(n - m) 2pix. It is shown that this family provides a complete set of orthogonal basis functions for signal analysis. By choosing the (real) numbers m and n (not necessarily integers) appropriately, wavelets whose frequency content ascends according to the musical scale can be generated. These musical wavelets provide greater frequency discrimination than is possible with harmonic wavelets whose frequency interval is always an octave. An example of the wavelet analysis of music illustrates possible applications.
引用
收藏
页码:605 / 620
页数:16
相关论文
共 9 条
[1]  
JAMES J, 1937, SCI MUSIC
[2]   A THEORY FOR MULTIRESOLUTION SIGNAL DECOMPOSITION - THE WAVELET REPRESENTATION [J].
MALLAT, SG .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :674-693
[3]  
Newland D. E., 2012, INTRO RANDOM VIBRATI
[4]   HARMONIC WAVELET ANALYSIS [J].
NEWLAND, DE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 443 (1917) :203-225
[5]  
NEWLAND DE, 1994, IN PRESS J VIB ACOUS, V116
[6]  
NEWLAND DE, 1994, PROBABILISTIC ENG ME, V9
[7]  
NEWLAND DE, 1994, CUEDCMECHTR60 U ENG
[8]  
NEWLAND DE, 1993, ASME ENERGY SOURCES, V52, P1
[9]   WAVELET TRANSFORMS VERSUS FOURIER-TRANSFORMS [J].
STRANG, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 28 (02) :288-305