MODELING PROTEIN LOOPS USING A PHI-I+1, PSI-I DIMER DATABASE

被引:39
作者
SUDARSANAM, S [1 ]
DUBOSE, RF [1 ]
MARCH, CJ [1 ]
SRINIVASAN, S [1 ]
机构
[1] IMMUNEX RES & DEV CORP, DEPT PROT CHEM, SEATTLE, WA 98101 USA
关键词
DE NOVO FOLDING; DIHEDRAL ANGLES; HOMOLOGY MODELING; KNOWLEDGE-BASED METHOD; LOOP MODELING;
D O I
10.1002/pro.5560040715
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present an automated method for modeling backbones of protein loops. The method samples a database of phi(i+1) and psi(i) angles constructed from a nonredundant version of the Protein Data Bank (PDB). The dihedral angles phi(i+1) and psi(i) completely define the backbone conformation of a dimer when standard bond lengths, bond angles, and a trans planar peptide configuration are used. For the 400 possible dimers resulting from 20 natural amino acids, a list of allowed phi(i+1), psi(i) pairs for each dimer is created by pooling all such pairs from the loop segments of each protein in the nonredundant version of the PDB. Starting from the N-terminus of the loop sequence, conformations are generated by assigning randomly selected pairs of phi(i+1), psi(i) for each dimer from the respective pool using standard bond lengths, bond angles, and a trans peptide configuration. We use this database to simulate protein loops of lengths varying from 5 to 11 amino acids in five proteins of known three-dimensional structures. Typically, 10,000-50,000 models are simulated for each protein loop and are evaluated for stereochemical consistency. Depending on the length and sequence of a given loop, 50-80% of the models generated have no stereochemical strain in the backbone atoms. We demonstrate that, when simulated loops are extended to include flanking residues from homologous segments, only very few loops from an ensemble of sterically allowed conformations orient the flanking segments consistent with the protein topology. The presence of near-native backbone conformations for loops from five different proteins suggests the completeness of the dimeric database for use in modeling loops of homologous proteins. Here, we take advantage of this observation to design a method that filters near-native loop conformations from an ensemble of sterically allowed conformations. We demonstrate that our method eliminates the need for a loop-closure algorithm and hence allows for the use of topological constraints of the homologous proteins or disulfide constraints to filter near-native loop conformations.
引用
收藏
页码:1412 / 1420
页数:9
相关论文
共 24 条
[1]  
[Anonymous], 1986, NUMERICAL RECIPES
[2]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[3]   A METHOD TO IDENTIFY PROTEIN SEQUENCES THAT FOLD INTO A KNOWN 3-DIMENSIONAL STRUCTURE [J].
BOWIE, JU ;
LUTHY, R ;
EISENBERG, D .
SCIENCE, 1991, 253 (5016) :164-170
[4]   PREDICTION OF THE FOLDING OF SHORT POLYPEPTIDE SEGMENTS BY UNIFORM CONFORMATIONAL SAMPLING [J].
BRUCCOLERI, RE ;
KARPLUS, M .
BIOPOLYMERS, 1987, 26 (01) :137-168
[5]   STRUCTURE OF ANTIBODY HYPERVARIABLE LOOPS REPRODUCED BY A CONFORMATIONAL SEARCH ALGORITHM [J].
BRUCCOLERI, RE ;
HABER, E ;
NOVOTNY, J .
NATURE, 1988, 335 (6190) :564-568
[6]   CONFORMATIONS OF IMMUNOGLOBULIN HYPERVARIABLE REGIONS [J].
CHOTHIA, C ;
LESK, AM ;
TRAMONTANO, A ;
LEVITT, M ;
SMITHGILL, SJ ;
AIR, G ;
SHERIFF, S ;
PADLAN, EA ;
DAVIES, D ;
TULIP, WR ;
COLMAN, PM ;
SPINELLI, S ;
ALZARI, PM ;
POLJAK, RJ .
NATURE, 1989, 342 (6252) :877-883
[7]   MODELING THE POLYPEPTIDE BACKBONE WITH SPARE PARTS FROM KNOWN PROTEIN STRUCTURES [J].
CLAESSENS, M ;
VANCUTSEM, E ;
LASTERS, I ;
WODAK, S .
PROTEIN ENGINEERING, 1989, 2 (05) :335-345
[8]   MODELING OF PROTEIN LOOPS BY SIMULATED ANNEALING [J].
COLLURA, V ;
HIGO, J ;
GARNIER, J .
PROTEIN SCIENCE, 1993, 2 (09) :1502-1510
[9]   COMPARISON OF SYSTEMATIC SEARCH AND DATABASE METHODS FOR CONSTRUCTING SEGMENTS OF PROTEIN-STRUCTURE [J].
FIDELIS, K ;
STERN, PS ;
BACON, D ;
MOULT, J .
PROTEIN ENGINEERING, 1994, 7 (08) :953-960
[10]  
FINE R M, 1986, Proteins Structure Function and Genetics, V1, P342, DOI 10.1002/prot.340010408