THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS

被引:605
作者
CAZENAVE, T [1 ]
WEISSLER, FB [1 ]
机构
[1] TEXAS A&M UNIV SYST, DEPT MATH, COLLEGE STN, TX 77843 USA
关键词
asymptotic behavior; Besov spaces; blowup; global existence; Nonlinear Schrödinger equation;
D O I
10.1016/0362-546X(90)90023-A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:807 / 836
页数:30
相关论文
共 36 条
[1]  
Bergh J., 1976, INTERPOLATION SPACES, V223
[2]   THE CAUCHY-PROBLEM FOR THE NONLINEAR SCHRODINGER-EQUATION IN H-1 [J].
CAZENAVE, T ;
WEISSLER, FB .
MANUSCRIPTA MATHEMATICA, 1988, 61 (04) :477-494
[3]  
CAZENAVE T, 1989, LECT NOTES MATH, V1394, P18
[4]   BOUNDARY-VALUE PROBLEMS FOR NAVIER-STOKES EQUATIONS [J].
FABES, EB ;
LEWIS, JE ;
RIVIERE, NM .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (03) :626-668
[5]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[6]   SOLUTIONS IN LR OF THE NAVIER-STOKES INITIAL-VALUE PROBLEM [J].
GIGA, Y ;
MIYAKAWA, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 89 (03) :267-281
[7]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[8]   CHARACTERIZING BLOWUP USING SIMILARITY VARIABLES [J].
GIGA, Y ;
KOHN, RV .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (01) :1-40
[9]  
GIGA Y, 1987, AUG P EQUADIFF C
[10]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR KLEIN-GORDON EQUATION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (04) :487-505