PARTIAL AND RANDOM LATTICE COVERING TIMES IN 2 DIMENSIONS

被引:23
作者
COUTINHO, KR
COUTINHO, MD
GOMES, MAF
NEMIROVSKY, AM
机构
[1] Departamento de Física, Universidade Federal de Pernambuco
关键词
D O I
10.1103/PhysRevLett.72.3745
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problems of the partial covering time (PCT) and of the random covering time (RCT) are studied in two dimensions using Monte Carlo simulations. We find that the PCT (RCT) presents a discontinuous transition at f = 1 (f = 0), where f is the fraction of visited sites by a random walker. An analysis of the time evolution of the surviving unvisited clusters reveals that they exhibit a time-dependent fractal-like structure.
引用
收藏
页码:3745 / 3749
页数:5
相关论文
共 20 条
[1]   ON THE TIME TAKEN BY RANDOM-WALKS ON FINITE-GROUPS TO VISIT EVERY STATE [J].
ALDOUS, DJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (03) :361-374
[2]  
[Anonymous], 1979, SCALING CONCEPTS POL
[3]   THE GRAND TOUR - A TOOL FOR VIEWING MULTIDIMENSIONAL DATA [J].
ASIMOV, D .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (01) :128-143
[4]  
BINDER K, 1987, APPLICATIONS MONTE C
[5]   COVERING OF A FINITE LATTICE BY A RANDOM-WALK [J].
BRUMMELHUIS, MJAM ;
HILHORST, HJ .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1991, 176 (03) :387-408
[6]  
DOYLE PG, 1984, RANDOM WALKS ELECTRI
[7]   FRAGMENT-SIZE DISTRIBUTION IN DISINTEGRATION BY MAXIMUM-ENTROPY FORMALISM [J].
ENGLMAN, R ;
RIVIER, N ;
JAEGER, Z .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1987, 56 (06) :751-769
[8]  
Feder J., 1988, FRACTALS
[9]  
HAUS JW, 1987, PHYS REP, V150, P253
[10]   DIFFUSION IN DISORDERED MEDIA [J].
HAVLIN, S ;
BENAVRAHAM, D .
ADVANCES IN PHYSICS, 1987, 36 (06) :695-798