APPROACH TO EQUILIBRIUM OF GLAUBER DYNAMICS IN THE ONE-PHASE REGION .2. THE GENERAL-CASE

被引:90
作者
MARTINELLI, F [1 ]
OLIVIERI, E [1 ]
机构
[1] UNIV TOR VERGATA,DIPARTIMENTO MATEMAT,ROME,ITALY
关键词
D O I
10.1007/BF02101930
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a new method, based on renormalization group ideas (block decimation procedure), to prove, under an assumption of strong mixing in a finite cube LAMBDA0, a Logarithmic Sobolev Inequality for the Gibbs state of a discrete spin system. As a consequence we derive the hypercontractivity of the Markov semigroup of the associated Glauber dynamics and the exponential convergence to equilibrium in the uniform norm in all volumes LAMBDA ''multiples'' of the cube LAMBDA0.
引用
收藏
页码:487 / 514
页数:28
相关论文
共 20 条
[1]  
[Anonymous], 1985, INTERACTING PARTICLE
[2]  
Dobrushin R. L., 1985, Statistical Physics and Dynamical Systems: Rigorous Results, P371
[3]   COMPLETELY ANALYTICAL INTERACTIONS - CONSTRUCTIVE DESCRIPTION [J].
DOBRUSHIN, RL ;
SHLOSMAN, SB .
JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (5-6) :983-1014
[4]  
DOBRUSHIN RL, 1970, THEOR PROBAB APPL, V15, P453
[5]  
ENTER AV, 1993, IN PRESS J STAT PHYS
[6]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[7]  
GROSS L, 1992, LOGARITHMIC SOBOLEV
[8]   LOGARITHMIC SOBOLEV INEQUALITIES AND STOCHASTIC ISING-MODELS [J].
HOLLEY, R ;
STROOCK, D .
JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (5-6) :1159-1194
[9]  
LU SL, 1992, SPECTRAL GAP LOGARIT
[10]   APPROACH TO EQUILIBRIUM OF GLAUBER DYNAMICS IN THE ONE-PHASE REGION .1. THE ATTRACTIVE CASE [J].
MARTINELLI, F ;
OLIVIERI, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 161 (03) :447-486