COMPACT ABELIAN GROUP EXTENSIONS OF DISCRETE DYNAMICAL SYSTEMS

被引:49
作者
PARRY, W
机构
[1] Mathematics Institute, University of Warwick, Coventry
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1969年 / 13卷 / 02期
关键词
D O I
10.1007/BF00537014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces the notion of a free G extension of a dynamical system where G is a compact abelian group. The concept is closely allied to that of generalised discrete spectrum (which includes Abramov's quasi-discrete spectrum as a special case). We give necessary and sufficient conditions for a G extension of a minimal (uniquely ergodic) dynamical system to be minimal (uniquely ergodic) and show that in a certain sense a general G extension lifts these properties. Stable G-extensions always lift these properties if the underlying space is connected. This fact is then used to characterise all uniquely ergodic and minimal affine transformations of a certain three dimensional nilmanifold. The rest of the paper is devoted to the exhibition of group invariants for systems with generalised discrete spectrum. In particular it is shown that such systems always have a compact abelian group as underlying space. A lemma which facilitates this result gives necessary and sufficient conditions for a connected G-extension of a compact abelian group to be a compact abelian group. © 1969 Springer-Verlag.
引用
收藏
页码:95 / &
相关论文
共 16 条
[1]  
Abramov L.M, 1964, AM MATH SOC TRANSL, V239, P37
[2]  
Abramov L. M., 1962, IZV AKAD NAUK SSSR M, V26, P513
[3]  
AUSLANDER L, 1963, 53 ANN MATH STUD PRI
[4]  
EFFROS EG, 1967, AMER MATH SOC, V73, P222
[5]  
Ellis R., 1965, AM J MATH, V87, P564
[6]   STRICT ERGODICITY AND TRANSFORMATION OF TORUS [J].
FURSTENBERG, H .
AMERICAN JOURNAL OF MATHEMATICS, 1961, 83 (04) :573-&
[7]   STRUCTURE OF DISTAL FLOWS [J].
FURSTENBERG, H .
AMERICAN JOURNAL OF MATHEMATICS, 1963, 85 (03) :477-&
[8]  
HAHN F, 1965, J LONDON MATH SOC, V40, P309
[9]  
HAHN F, TO BE PUBLISHED
[10]  
HOARE H, 1966, J LONDON MATH SOC, V41, P529