LINEAR COMBINATIONS OF HERMITIAN AND REAL SYMMETRIC MATRICES

被引:3
作者
MAJINDAR, KN
机构
[1] Concordia University Loyola Campus Montreal, Quebec
关键词
D O I
10.1016/0024-3795(79)90009-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper, by purely algebraic and elementary methods, studies useful criteria under which the quadratic forms x′Ax and x′Bx, where A,B are n × n symmetric real matrices and x′=(x1,x2, ...,xn)≠(0,0,0,0, ...,0), can vanish simultaneously and some real linear combination of A,B can be positive definite. Analogous results for hermitian matrices have also been discussed. We have given sufficient conditions on m real symmetric matrices so that some real linear combination of them can be positive definite. © 1979.
引用
收藏
页码:95 / 105
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 1963, LINEAR ALGEBRA
[5]  
AUYEUNG YH, 1971, P CAMBRIDGE PHILOS 3, V71, P383
[6]  
Calabi E., 1964, P AM MATH SOC, V15, P844
[7]  
Hestenes MR., 1968, LINEAR ALGEBRA APPL, V1, P397, DOI [DOI 10.1016/0024-3795(68)90016-5, 10.1016/0024-3795(68)90016-5]
[8]  
KRALJEVIC H, 1966, GLAS MAT 3, V1, P57
[9]   ON SIMULTANEOUS HERMITIAN CONGRUENCE TRANSFORMATIONS OF MATRICES [J].
MAJINDAR, KN .
AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (08) :842-&
[10]  
Pinsler P., 1936, Comment. Math. Helv., V9, P188