REMARKS ON THE COMPACTNESS OF ISOSPECTRAL SETS IN LOW DIMENSIONS

被引:14
作者
ANDERSON, MT
机构
[1] Department Of Mathematics, State University Of New York, Stony Brook, NY
关键词
D O I
10.1215/S0012-7094-91-06329-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:699 / 711
页数:13
相关论文
共 23 条
[1]  
ANDERSON M, IN PRESS J DIFFERENT
[2]   CONVERGENCE AND RIGIDITY OF MANIFOLDS UNDER RICCI CURVATURE BOUNDS [J].
ANDERSON, MT .
INVENTIONES MATHEMATICAE, 1990, 102 (02) :429-445
[3]  
BERGER M, 1975, P S PURE MATH, V27, P127
[4]   ISOSPECTRAL SETS OF CONFORMALLY EQUIVALENT METRICS [J].
BROOKS, R ;
PERRY, P ;
YANG, P .
DUKE MATHEMATICAL JOURNAL, 1989, 58 (01) :131-150
[5]  
BROOKS R, COMMUNICATION
[6]  
Chang S.-Y.A., 1990, J AM MATH SOC, V3, P117
[7]  
Chavel I., 1984, EIGENVALUES RIEMANNI
[8]   POISSON FORMULA FOR RIEMANN VARIATIONS [J].
CHAZARAIN, J .
INVENTIONES MATHEMATICAE, 1974, 24 (01) :65-82
[9]   FINITENESS THEOREMS FOR RIEMANNIAN MANIFOLDS [J].
CHEEGER, J .
AMERICAN JOURNAL OF MATHEMATICS, 1970, 92 (01) :61-&
[10]  
de Verdiere Y. C, 1973, COMPOS MATH, V27, p[83, 159]