SOME RELATIONS SATISFIED BY PRIME POLYNOMIAL MATRICES AND THEIR ROLE IN LINEAR-MULTIVARIABLE SYSTEM THEORY

被引:19
作者
ANTSAKLIS, PJ [1 ]
机构
[1] RICE UNIV,DEPT ELECT ENGN,HOUSTON,TX 77001
关键词
D O I
10.1109/TAC.1979.1102126
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A number of relations which are satisfied by prime polynomial matrices are derived and then used to study the polynomial matrix equation BG1 + G2A = V and to parametrically characterize the class of stabilizing output feedback compensators. © 1979 IEEE
引用
收藏
页码:611 / 616
页数:6
相关论文
共 16 条
[1]   STABILITY OF MATRIX POLYNOMIALS [J].
ANDERSON, BDO ;
BITMEAD, RR .
INTERNATIONAL JOURNAL OF CONTROL, 1977, 26 (02) :235-247
[2]   STABILIZATION AND REGULATION IN LINEAR-MULTIVARIABLE SYSTEMS [J].
ANTSAKLIS, PJ ;
PEARSON, JB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (05) :928-930
[3]  
ANTSAKLIS PJ, 1977, THESIS BROWN U
[4]  
ANTSAKLIS PJ, 1974, THESIS BROWN U
[5]   OUTPUT REGULATION AND INTERNAL MODELS - A FREQUENCY-DOMAIN APPROACH [J].
BENGTSSON, G .
AUTOMATICA, 1977, 13 (04) :333-345
[6]  
CHENG L, 1978, IEEE T AUTOMAT CONTR, V23, P3, DOI 10.1109/TAC.1978.1101694
[7]  
FORNEY GD, 1975, SIAM J CONTR, V13
[8]   ALGEBRAIC APPROACH TO DISCRETE LINEAR CONTROL [J].
KUCERA, V .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1975, AC20 (01) :116-120
[9]  
Rosenbrock H., 1970, STATE SPACE MULTIVAR
[10]   THE EQUATIONS AX-YB=C AND AX-XB=C IN MATRICES [J].
ROTH, WE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 3 (03) :392-396