EXACT SOLUTION OF THE LOCK STEP MODEL OF VICIOUS WALKERS

被引:37
作者
FORRESTER, PJ
机构
[1] Dept. of Math., La Trobe Univ., Bundoora, Vic.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 07期
关键词
D O I
10.1088/0305-4470/23/7/029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The lock step model of vicious walkers on a one-dimensional lattice allows each walker at the tick of a clock to move either one lattice site to the left or one lattice site to the right. The only restriction is that no two walkers may arrive at the same lattice site or pass one another. In periodic boundary conditions the partition function and correlation function for this model are calculated exactly. Taking the continuum limit gives an exactly solvable model of vicious walkers undergoing Brownian motion.
引用
收藏
页码:1259 / 1273
页数:15
相关论文
共 15 条
[1]  
Aitken A. C., 1956, DETERMINANTS MATRICE, V9
[2]   CRITICAL CORRELATIONS IN A Z-INVARIANT INHOMOGENEOUS ISING-MODEL [J].
AUYANG, H ;
PERK, JHH .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1987, 144 (01) :44-104
[4]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[5]  
Feynman R., 1965, QUANTUM MECH PATH IN
[6]  
FISHER ME, 1984, J STAT PHYS, V34, P669
[7]  
FORRESTER PJ, 1990, IN PRESS SIAM J MATH
[8]   COMMENSURATE MELTING, DOMAIN-WALLS, AND DISLOCATIONS [J].
HUSE, DA ;
FISHER, ME .
PHYSICAL REVIEW B, 1984, 29 (01) :239-270
[9]  
LIEB EH, 1966, MATH PHYSICS ONE DIM
[10]   GROUND-STATE, SPECTRUM, AND PHASE-DIAGRAM OF 2-DIMENSIONAL INCOMMENSURATE CRYSTALS [J].
POKROVSKY, VL ;
TALAPOV, AL .
PHYSICAL REVIEW LETTERS, 1979, 42 (01) :65-67