TWISTED GAUSSIAN SCHELL-MODEL BEAMS .1. SYMMETRY STRUCTURE AND NORMAL-MODE SPECTRUM

被引:90
作者
SIMON, R [1 ]
SUNDAR, K [1 ]
MUKUNDA, N [1 ]
机构
[1] JAWAHARLAL NEHRU CTR ADV SCI RES,BANGALORE 560012,INDIA
来源
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION | 1993年 / 10卷 / 09期
关键词
D O I
10.1364/JOSAA.10.002008
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a comprehensive normal-mode decomposition analysis for the recently introduced [J. Opt. Soc. Am. A 10, 95 (1993)] class of twisted Gaussian Schell-model fields in partially coherent beam optics. The formal analogies to quantum mechanics in two dimensions are exploited. We also make effective use of a dynamical SU(2) symmetry of these fields to achieve the mode decomposition and to determine the spectrum. The twist phase is nonseparable in nature, rendering it nontrivially two dimensional. The cosequences of this, resulting in the need to use Laguerre-Gaussian functions rather than products of Hermite-Gaussians, are carefully analyzed. An important identity involving these sets of special functions is established and is used in deriving the spectrum.
引用
收藏
页码:2008 / 2016
页数:9
相关论文
共 54 条
[1]  
AGRAWAL GS, 1990, PHYS REV A, V42, P6924
[2]  
AGRAWAL GS, 1987, OPT COMMUN, V62, P67
[3]   THE ADIABATIC PHASE AND PANCHARATNAM PHASE FOR POLARIZED-LIGHT [J].
BERRY, MV .
JOURNAL OF MODERN OPTICS, 1987, 34 (11) :1401-1407
[4]   OBSERVATION OF TOPOLOGICAL PHASE BY USE OF A LASER INTERFEROMETER [J].
BHANDARI, R ;
SAMUEL, J .
PHYSICAL REVIEW LETTERS, 1988, 60 (13) :1211-1213
[5]  
BIEDENHARN LC, 1981, ANGULAR MOMENTUM QUA, pCH4
[6]   QUANTUM-MECHANICAL LOSSLESS BEAM SPLITTER - SU(2) SYMMETRY AND PHOTON STATISTICS [J].
CAMPOS, RA ;
SALEH, BEA ;
TEICH, MC .
PHYSICAL REVIEW A, 1989, 40 (03) :1371-1384
[7]  
CARTER WH, 1978, J OPT SOC AM, V68, P329, DOI 10.1364/JOSA.68.000329
[8]   MEASUREMENT OF THE PANCHARATNAM PHASE FOR A LIGHT-BEAM [J].
CHYBA, TH ;
WANG, LJ ;
MANDEL, L ;
SIMON, R .
OPTICS LETTERS, 1988, 13 (07) :562-564
[9]   IS COMPLETE SPATIAL COHERENCE NECESSARY FOR GENERATION OF HIGHLY DIRECTIONAL LIGHT-BEAMS [J].
COLLETT, E ;
WOLF, E .
OPTICS LETTERS, 1978, 2 (02) :27-29
[10]   ANALOGIES BETWEEN 2 OPTICAL-SYSTEMS (PHOTON-BEAM SPLITTERS AND LASER-BEAMS) AND 2 QUANTUM-SYSTEMS (THE 2-DIMENSIONAL OSCILLATOR AND THE 2-DIMENSIONAL HYDROGEN-ATOM) [J].
DANAKAS, S ;
ARAVIND, PK .
PHYSICAL REVIEW A, 1992, 45 (03) :1973-1977