Renormalization group theory of anomalous transport in systems with Hamiltonian chaos

被引:86
作者
Zaslavsky, G. M. [1 ,2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] NYU, Dept Phys, New York, NY 10012 USA
关键词
D O I
10.1063/1.166054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a general scheme to describe particle kinetics in the case of incomplete Hamiltonian chaos when a set of islands of stability forms a complicated fractal space-time dynamics and when there is orbit stickiness to the islands' boundary. This kinetics is alternative to the ''normal'' Fokker-Planck-Kolmogorov equation. A new kinetic equation describes random wandering in the fractal space-time. Critical exponents of the anomalous kinetics are expressed through dynamical characteristics of a Hamiltonian using the renormalization group approach. Renormalization transformation has been applied simultaneously for space and time and fractional calculus has been exploited.
引用
收藏
页码:25 / 33
页数:9
相关论文
共 39 条
[1]  
Afanasiev VV, 1991, CHAOS, V1
[2]   THE TWIST MAP, THE EXTENDED FRENKEL-KONTOROVA MODEL AND THE DEVILS STAIRCASE [J].
AUBRY, S .
PHYSICA D, 1983, 7 (1-3) :240-258
[3]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[4]   RIGOROUSLY DIFFUSIVE DETERMINISTIC MAP [J].
CARY, JR ;
MEISS, JD .
PHYSICAL REVIEW A, 1981, 24 (05) :2664-2668
[5]   Channeling and percolation in two-dimensional chaotic dynamics [J].
Chaikovsky, D. K. ;
Zaslavsky, G. M. .
CHAOS, 1991, 1 (04) :463-472
[6]   ANOMALOUS TRANSPORT OF STREAMLINES DUE TO THEIR CHAOS AND THEIR SPATIAL TOPOLOGY [J].
CHERNIKOV, AA ;
PETROVICHEV, BA ;
ROGALSKY, AV ;
SAGDEEV, RZ ;
ZASLAVSKY, GM .
PHYSICS LETTERS A, 1990, 144 (03) :127-133
[7]  
Chirikov B. V., 1991, Chaos, Solitons and Fractals, V1, P79, DOI 10.1016/0960-0779(91)90057-G
[8]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[9]   CORRELATION-PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN-SYSTEMS [J].
CHIRIKOV, BV ;
SHEPELYANSKY, DL .
PHYSICA D, 1984, 13 (03) :395-400
[10]   RESONANCES AND DIFFUSION IN PERIODIC HAMILTONIAN MAPS [J].
DANA, I ;
MURRAY, NW ;
PERCIVAL, IC .
PHYSICAL REVIEW LETTERS, 1989, 62 (03) :233-236