THE BREAKDOWN OF QUANTUM NONLOCALITY IN THE CLASSICAL LIMIT

被引:34
作者
PAGONIS, C
REDHEAD, MLG
CLIFTON, RK
机构
[1] Department of History and Philosophy of Science, University of Cambridge, Cambridge, CB2 3RH, Free School Lane
关键词
D O I
10.1016/0375-9601(91)90643-M
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how Mermin's algebraic proof of non-locality can be extended to the N-particle case and discuss the discontinuous transition to classical behaviour that occurs in the physically unrealisble limit of an infinite number of particles.
引用
收藏
页码:441 / 444
页数:4
相关论文
共 16 条
[1]  
Belinfante F.J., 1973, INT SERIES MONOGRAPH, V55
[2]   NONLOCALITY AND GLEASON LEMMA .1. DETERMINISTIC THEORIES [J].
BROWN, HR ;
SVETLICHNY, G .
FOUNDATIONS OF PHYSICS, 1990, 20 (11) :1379-1387
[3]  
CLIFTON RK, 1991, IN PRESS F PHYS, V21
[4]   NONLOCALITY AND GLEASON LEMMA .2. STOCHASTIC THEORIES [J].
ELBY, A .
FOUNDATIONS OF PHYSICS, 1990, 20 (11) :1389-1397
[5]   BELL INEQUALITIES WITH A RANGE OF VIOLATION THAT DOES NOT DIMINISH AS THE SPIN BECOMES ARBITRARILY LARGE [J].
GARG, A ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1982, 49 (13) :901-904
[6]   BELL THEOREM WITHOUT INEQUALITIES [J].
GREENBERGER, DM ;
HORNE, MA ;
SHIMONY, A ;
ZEILINGER, A .
AMERICAN JOURNAL OF PHYSICS, 1990, 58 (12) :1131-1143
[7]  
HEPP K, 1972, HELV PHYS ACTA, V45, P237
[8]   NONLOCALITY AND THE KOCHEN-SPECKER PARADOX [J].
HEYWOOD, P ;
REDHEAD, MLG .
FOUNDATIONS OF PHYSICS, 1983, 13 (05) :481-499
[9]  
KOCHEN S, 1967, J MATH MECH, V17, P59
[10]   SIMPLE UNIFIED FORM FOR THE MAJOR NO-HIDDEN-VARIABLES THEOREMS [J].
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1990, 65 (27) :3373-3376