The formation of carbon centered free radicals, identified as methylcarbonyl species, was observed using ESR spectroscopy and the spin trapping agent 4-pyridyl-1-oxide-N-t-butyl nitrone (4-POBN) during the oxidation of acetaldehyde by xanthine oxidase. The reaction was dependent upon the presence of OH* radicals and was inhibited by the addition of superoxide dismutase, catalase or OH* radical scavengers. The generation of methylcarbonyl radicals was associated with a doubling of stable acetaldehyde adducts with serum albumin, and 4-POBN or superoxide dismutase and catalase, completely blocked this effect. Thus, methylcarbonyl radicals contributed to acetaldehyde-mediated protein alkylation which is involved in causing toxic as well as immunological reactions ascribed to acetaldehyde.