ON GEOMETRIC ENTROPY

被引:676
作者
CALLAN, C
WILCZEK, F
机构
[1] School of Natural Sciences, Institute for Advanced Study, Princeton
关键词
D O I
10.1016/0370-2693(94)91007-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that a geometrical notion of entropy, definable in flat space, governs the first quantum correction to the Bekenstein-Hawking black hole entropy. We describe two methods for calculating this entropy - a straightforward Hamiltonian approach, and a less direct but more powerful Euclidean (heat kernel) method. The entropy diverges in quantum field theory in the absence of an ultraviolet cutoff. Various related finite quantities can be extracted with further work. We briefly discuss the corresponding question in string theory.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 12 条
[1]   THEORY OF STRINGS WITH BOUNDARIES - FLUCTUATIONS, TOPOLOGY AND QUANTUM GEOMETRY [J].
ALVAREZ, O .
NUCLEAR PHYSICS B, 1983, 216 (01) :125-184
[2]   DISTRIBUTION OF EIGENFREQUENCIES FOR WAVE EQUATION IN A FINITE DOMAIN .2. ELECTROMAGNETIC FIELD - RIEMANNIAN SPACES [J].
BALIAN, R ;
BLOCH, C .
ANNALS OF PHYSICS, 1971, 64 (01) :271-&
[3]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383
[4]  
CARLIP S, IASSNSHEP9384 PREPR
[5]   STRINGS ON ORBIFOLDS [J].
DIXON, L ;
HARVEY, JA ;
VAFA, C ;
WITTEN, E .
NUCLEAR PHYSICS B, 1985, 261 (04) :678-686
[6]  
HOLZHEY C, IASSNSHEP9388 PREPR
[7]  
HOLZHEY C, 1993, THESIS PRINCETON U
[8]  
KABAT D, RUTGERS PREPRINT
[9]   ENTROPY AND AREA [J].
SREDNICKI, M .
PHYSICAL REVIEW LETTERS, 1993, 71 (05) :666-669
[10]   STRING THEORY AND THE PRINCIPLE OF BLACK-HOLE COMPLEMENTARITY [J].
SUSSKIND, L .
PHYSICAL REVIEW LETTERS, 1993, 71 (15) :2367-2368