AN EXACT SOLUTION OF A RING-SHAPED OSCILLATOR PLUS A C SEC2-THETA/R2 POTENTIAL

被引:54
作者
CARPIOBERNIDO, MV [1 ]
BERNIDO, CC [1 ]
机构
[1] SUNY ALBANY,DEPT PHYS,ALBANY,NY 12222
关键词
D O I
10.1016/0375-9601(89)90357-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:395 / 399
页数:5
相关论文
共 15 条
[1]  
CARPIO MV, 1986, PATH INTEGRALS MEV M, P261
[2]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[3]  
Feynman R., 1965, QUANTUM MECH PATH IN
[4]   SPACE-TIME APPROACH TO NON-RELATIVISTIC QUANTUM MECHANICS [J].
FEYNMAN, RP .
REVIEWS OF MODERN PHYSICS, 1948, 20 (02) :367-387
[5]   DYNAMIC GROUP FOR A RING POTENTIAL [J].
GERRY, CC .
PHYSICS LETTERS A, 1986, 118 (09) :445-447
[6]  
Gradshteyn I. S., 1980, TABLES INTEGRALS SER
[7]   MOTION OF A BODY IN A RING-SHAPED POTENTIAL [J].
HARTMANN, H .
THEORETICA CHIMICA ACTA, 1972, 24 (2-3) :201-&
[8]   DIAMAGNETIC SUSCEPTIBILITY OF A NON-SPHEROSYMMETRIC SYSTEM [J].
HARTMANN, H ;
SCHUCK, R ;
RADTKE, J .
THEORETICA CHIMICA ACTA, 1976, 42 (01) :1-3
[9]   EXACT PROPAGATOR FOR A TIME-DEPENDENT HARMONIC-OSCILLATOR WITH AND WITHOUT A SINGULAR PERTURBATION [J].
KHANDEKAR, DC ;
LAWANDE, SV .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (02) :384-388
[10]   COULOMBIC AND RING-SHAPED POTENTIALS TREATED IN A UNIFIED WAY VIA A NONBIJECTIVE CANONICAL TRANSFORMATION [J].
KIBLER, M .
THEORETICA CHIMICA ACTA, 1984, 66 (01) :31-42