DIRECT METHOD OF CALCULATING PERIODIC-WAVE SOLUTIONS TO NON-LINEAR EVOLUTION-EQUATIONS .1. EXACT 2-PERIODIC WAVE SOLUTION

被引:195
作者
NAKAMURA, A
机构
[1] Physics Laboratory, Faculty of Industrial Arts, Kyoto Technical University
关键词
D O I
10.1143/JPSJ.47.1701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that if a given nonlinear evolution equation is reduced to Hirota's single bilinear equation by the dependent variable transformation, it always has at least exact two-periodic wave (periodic analogue of two-soliton) solutions described by multi(two)-dimensional elliptic ϑ-function. © 1979, THE PHYSICAL SOCIETY OF JAPAN. All rights reserved.
引用
收藏
页码:1701 / 1705
页数:5
相关论文
共 18 条
[1]  
Bellman R., 1961, BRIEF INTRO THETA FU
[2]   ANALOG OF INVERSE SCATTERING THEORY FOR DISCRETE HILLS EQUATION AND EXACT SOLUTIONS FOR PERIODIC TODA LATTICE [J].
DATE, E ;
TANAKA, S .
PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02) :457-465
[3]   QUASI-PERIODIC SOLUTIONS OF FIELD EQUATION OF CLASSICAL MASSIVE THIRRING MODEL [J].
DATE, E .
PROGRESS OF THEORETICAL PHYSICS, 1978, 59 (01) :265-273
[4]  
DATE E, 1976, SUP PROG THEOR PHYS, P107, DOI 10.1143/PTPS.59.107
[5]  
Dubrovin B.A., 1975, FUNCT ANAL APPL, V9, P65
[6]  
DUBROVIN BA, 1974, ZH EKSP TEOR FIZ+, V67, P2131
[7]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[9]  
HIROTA R, 1976, SUP PROG THEOR PHYS, P64
[10]  
HIROTA R, 1978, REP I PLASMA PHYS S, V40, P67