DYNAMIC-SYSTEM FORMULATION OF THE EIGENVALUE MOMENT METHOD

被引:7
作者
HANDY, CR [1 ]
GIRAUD, BG [1 ]
BESSIS, D [1 ]
机构
[1] CENS, SERV PHYS THEOR, F-91190 GIF SUR YVETTE, FRANCE
来源
PHYSICAL REVIEW A | 1991年 / 44卷 / 03期
关键词
D O I
10.1103/PhysRevA.44.1505
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The eigenvalue moment method (EMM), a linear-programming (LP) based technique for generating converging bounds to quantum eigenenergies, is reformulated as an iterative dynamical system (DS). Important convexity properties are uncovered significantly impacting the theoretical and computational implementation of the EMM program. In particular, whereas the LP-based EMM formulation (LP-EMM) can require the generation and storage of many inequalities [up to several thousand for a 10-missing moment problem (m(s) = 10)], the dynamical-system formulation (DS-EMM) generates a reduced set of inequalities [of order O(m(s) + 1)]. This is made possible by replacing the LP generation of deep interior points (DIP's) by a Newton iteration process. The latter generates an optimal set of DIP's sufficient to determine the existence or nonexistence of the relevant missing moment polytopes. The general DS-EMM theory is presented together with numerical examples.
引用
收藏
页码:1505 / 1515
页数:11
相关论文
共 14 条
[1]   LOWER BOUNDS FOR QUANTUM-MECHANICAL ENERGY-LEVELS [J].
BARNSLEY, MF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (01) :55-68
[2]   HYDROGENIC ATOMS IN THE EXTERNAL POTENTIAL V(R)=GR+LAMBDA-R(2) - EXACT-SOLUTIONS AND GROUND-STATE EIGENVALUE BOUNDS USING MOMENT METHODS [J].
BESSIS, D ;
VRSCAY, ER ;
HANDY, CR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (02) :419-428
[3]  
Chvatal V., 1983, LINEAR PROGRAMMING
[4]   RAPID WAVE-FUNCTION RECONSTRUCTION THROUGH HANKEL-HADAMARD MOMENTS ANALYSIS [J].
HANDY, CR ;
WILLIAMS, RM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (09) :2315-2323
[5]   HANKEL-HADAMARD ANALYSIS OF QUANTUM POTENTIAL X2+LAMBDA-X2/(1+GX2) [J].
HANDY, CR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (18) :3593-3596
[6]   GENERATING QUANTUM ENERGY BOUNDS BY THE MOMENT METHOD - A LINEAR-PROGRAMMING APPROACH [J].
HANDY, CR ;
BESSIS, D ;
MORLEY, TD .
PHYSICAL REVIEW A, 1988, 37 (12) :4557-4569
[7]   RAPIDLY CONVERGENT LOWER BOUNDS FOR THE SCHRODINGER-EQUATION GROUND-STATE ENERGY [J].
HANDY, CR ;
BESSIS, D .
PHYSICAL REVIEW LETTERS, 1985, 55 (09) :931-934
[8]   RAPIDLY CONVERGING BOUNDS FOR THE GROUND-STATE ENERGY OF HYDROGENIC ATOMS IN SUPERSTRONG MAGNETIC-FIELDS [J].
HANDY, CR ;
BESSIS, D ;
SIGISMONDI, G ;
MORLEY, TD .
PHYSICAL REVIEW LETTERS, 1988, 60 (04) :253-256
[9]   POSITIVITY AND THE ENERGY QUANTIZATION OF PHYSICAL SYSTEMS - THE C-SHIFT MOMENT METHOD [J].
HANDY, CR ;
LEE, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (07) :1565-1578
[10]   QUANTUM-THEORY OF ANHARMONIC OSCILLATORS .2. ENERGY-LEVELS OF OSCILLATORS WITH X2ALPHA ANHARMONICITY [J].
HIOE, FT ;
MACMILLEN, D ;
MONTROLL, EW .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (07) :1320-1337