3-VALENT GRAPHS AND THE KAUFFMAN BRACKET

被引:84
作者
MASBAUM, G [1 ]
VOGEL, P [1 ]
机构
[1] UNIV PARIS 07,CNRS,URA 212,F-75251 PARIS 05,FRANCE
关键词
D O I
10.2140/pjm.1994.164.361
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explicitly determine the tetrahedron coefficient for the one-variable Kauffman bracket, using only Wenzl's recursion formula for the Jones idempotents (or augmentation idempotents) of the Temperley-Lieb algebra.
引用
收藏
页码:361 / 381
页数:21
相关论文
共 18 条
[1]  
BIEDENHARN LC, 1981, ENCY MATH ITS APPLIC, V8
[2]   3-MANIFOLD INVARIANTS DERIVED FROM THE KAUFFMAN BRACKET [J].
BLANCHET, C ;
HABEGGER, N ;
MASBAUM, G ;
VOGEL, P .
TOPOLOGY, 1992, 31 (04) :685-699
[3]  
BLANCHET C, 1991, IN PRESS NATO ADV RE
[4]   INDEX FOR SUBFACTORS [J].
JONES, VFR .
INVENTIONES MATHEMATICAE, 1983, 72 (01) :1-25
[5]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[6]  
KAUFFMAN LH, 1987, TOPOLOGY, V26, P395
[7]  
KAUFFMAN LH, 1990, KNOTS SPIN NETWORKS
[8]   THE 3-MANIFOLD INVARIANTS OF WITTEN AND RESHETIKHIN-TURAEV FOR SL(2, C) [J].
KIRBY, R ;
MELVIN, P .
INVENTIONES MATHEMATICAE, 1991, 105 (03) :473-545
[9]  
Kirillov A.N., 1988, REPRESENTATIONS ALGE
[10]   3-MANIFOLDS AND THE TEMPERLEY-LIEB ALGEBRA [J].
LICKORISH, WBR .
MATHEMATISCHE ANNALEN, 1991, 290 (04) :657-670