THE ADDITION FORMULA FOR LITTLE Q-LEGENDRE POLYNOMIALS AND THE SU(2) QUANTUM GROUP

被引:39
作者
KOORNWINDER, TH
机构
关键词
QUANTUM GROUPS; SU(2); LITTLE Q-JACOBI POLYNOMIALS; LITTLE Q-LEGENDRE POLYNOMIALS; WALL POLYNOMIALS; ADDITION FORMULA; PRODUCT FORMULA;
D O I
10.1137/0522018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
From the interpretation of little q-Jacobi polynomials as matrix elements of the irreducible unitary representations of the SU(2) quantum group an addition formula is derived for the little q-Legendre polynomials. It involves an expansion in terms of Wall polynomials. A product formula for little q-Legendre polynomials follows by q-integration.
引用
收藏
页码:295 / 301
页数:7
相关论文
共 19 条
[1]  
Andrews GE., 1977, HIGHER COMBINATORICS, P3, DOI [10.1007/978-94-010-1220-1_1, DOI 10.1007/978-94-010-1220-1_1]
[2]   ORTHOGONAL POLYNOMIALS WITH BRENKE TYPE GENERATING FUNCTIONS [J].
CHIHARA, TS .
DUKE MATHEMATICAL JOURNAL, 1968, 35 (03) :505-+
[3]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[4]  
DRINFELD VG, 1987, 1986 P INT C MATH BE, P798
[5]  
Gasper G., 1990, BASIC HYPERGEOMETRIC
[6]  
HAHN W, 1949, MATH NACHR, V2, P379
[7]  
Hahn W., 1949, MATH NACHR, V2, P4, DOI 10.1002/mana.19490020103
[8]   ASYMPTOTIC AND GENERATING RELATIONS FOR THE Q-JACOBI AND 4-PHI-3 POLYNOMIALS [J].
ISMAIL, MEH ;
WILSON, JA .
JOURNAL OF APPROXIMATION THEORY, 1982, 36 (01) :43-54
[9]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69
[10]  
KOORNWINDER TH, 1989, NEDERL AKAD WETENSCH, V51, P97