AVERAGING DIFFERENTIAL-OPERATORS WITH ALMOST PERIODIC, RAPIDLY OSCILLATING COEFFICIENTS

被引:52
作者
KOZLOV, SM
机构
来源
MATHEMATICS OF THE USSR-SBORNIK | 1979年 / 35卷 / 04期
关键词
D O I
10.1070/SM1979v035n04ABEH001561
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Dirichlet problem containing a small parameter is considered, where the coefficients are almost periodic functions in the sense of Besicovitch. An averaged equation having constant coefficients is contracted, and the convergence of to the solution of the averaged equation is proved. An estimate of the remainder is obtained under the condition that there are no anomalous commensurable frequencies in the spectrum of the coefficients. For the problem in the whole space a complete asymptotic expansion in powers of is constructed. Bibliography: 12 titles. © 1979 IOP Publishing Ltd.
引用
收藏
页码:481 / 498
页数:18
相关论文
共 12 条
[1]  
BAHVALOV NS, 1974, DOKL AKAD NAUK SSSR, V218, P1046
[2]  
BENSOUSSAN A, 1975, CR ACAD SCI PARIS, V281, pA89
[3]  
BENSOUSSAN A, 1976, CR ACAD SCI PARIS AB, V282, pA143
[4]  
BERDICHEVSKII VL, 1975, DOKL AKAD NAUK SSSR+, V222, P565
[5]  
Freidlin M. I., 1964, TEOR VEROYA PRIMEN, V9, P133
[6]  
LANDIS EM, 1977, DOKL AKAD NAUK SSSR+, V235, P1253
[7]  
LIONS JL, 1976, QUELQUES QUESTIONS A
[8]  
PANASENKO GP, 1976, P C YOUNG SCI DEP NU, P53
[9]  
Spagnolo S., 1973, B UNION MAT ITAL 4, V8, P391
[10]  
SPAGNOLO S, 1968, ANN SCUOLA NORM SUP, V22, P571