ON THE ALMOST EVERYWHERE PROPERTIES OF THE KERNEL REGRESSION ESTIMATE

被引:7
作者
PAWLAK, M [1 ]
机构
[1] UNIV MANITOBA,DEPT ELECT & COMP ENGN,WINNIPEG R3T 2N2,MANITOBA,CANADA
关键词
REGRESSION FUNCTION; KERNEL ESTIMATE; ASYMPTOTIC EXPANSIONS; DISTRIBUTION-FREE PROPERTIES; ASYMPTOTIC NORMALITY; BANDWIDTH-SELECTION; BIAS ADJUSTMENT;
D O I
10.1007/BF00118638
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The regression m(x) = E{Y \ X = x} is estimated by the kernel regression estimate m triple-overdot (x) calculated from a sequence (X1, Y1),..., (X(n), Y(n)) of independent identically distributed random vectors from R(d) x R. The second order asymptotic expansions for Em triple-overdot (x) and var m triple-overdot (x) are derived. The expansions hold for almost all (mu) x is-an-element-of R(d), mu is the probability measure of X. No smoothing conditions on mu and m are imposed. As a result, the asymptotic distribution-free normality for a stochastic component of m triple-overdot (x) is established. Also some bandwidth-selection rule is suggested and bias adjustment is proposed.
引用
收藏
页码:311 / 326
页数:16
相关论文
共 31 条
[1]   DISTRIBUTION FUNCTION INEQUALITIES FOR MARTINGALES [J].
BURKHOLDER, DL .
ANNALS OF PROBABILITY, 1973, 1 (01) :19-42
[2]  
Collomb G., 1977, C R ACAD SCI PARIS A, V285, P289
[3]  
COLLOMB G, 1985, STATISTICS, V16, P300
[4]   ON THE ALMOST EVERYWHERE CONVERGENCE OF NONPARAMETRIC REGRESSION FUNCTION ESTIMATES [J].
DEVROYE, L .
ANNALS OF STATISTICS, 1981, 9 (06) :1310-1319
[5]   DISTRIBUTION-FREE CONSISTENCY RESULTS IN NONPARAMETRIC DISCRIMINATION AND REGRESSION FUNCTION ESTIMATION [J].
DEVROYE, LP ;
WAGNER, TJ .
ANNALS OF STATISTICS, 1980, 8 (02) :231-239
[6]   NECESSARY AND SUFFICIENT CONSISTENCY CONDITIONS FOR A RECURSIVE KERNEL REGRESSION ESTIMATE [J].
GREBLICKI, W ;
PAWLAK, M .
JOURNAL OF MULTIVARIATE ANALYSIS, 1987, 23 (01) :67-76
[7]   DISTRIBUTION-FREE POINTWISE CONSISTENCY OF KERNEL REGRESSION ESTIMATE [J].
GREBLICKI, W ;
KRZYZAK, A ;
PAWLAK, M .
ANNALS OF STATISTICS, 1984, 12 (04) :1570-1575
[8]   FOURIER AND HERMITE SERIES ESTIMATES OF REGRESSION-FUNCTIONS [J].
GREBLICKI, W ;
PAWLAK, M .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1985, 37 (03) :443-454
[9]   ON THE MINIMIZATION OF ABSOLUTE DISTANCE IN KERNEL DENSITY-ESTIMATION [J].
HALL, P ;
WAND, MP .
STATISTICS & PROBABILITY LETTERS, 1988, 6 (05) :311-314
[10]   ASYMPTOTIC PROPERTIES OF INTEGRATED SQUARE ERROR AND CROSS-VALIDATION FOR KERNEL ESTIMATION OF A REGRESSION FUNCTION [J].
HALL, P .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 67 (02) :175-196