MULTIPLE TIME SCALE METHODS FOR ADIABATIC SYSTEMS

被引:3
作者
ANDERSON, JL
机构
关键词
D O I
10.1119/1.17016
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The method of multiple time scales is applied to adiabatic systems, Adiabatic theorems for both classical and quantum systems are derived and expressions for Berry's phase and its classical counterpart are obtained within the framework of a consistent approximation scheme.
引用
收藏
页码:923 / 927
页数:5
相关论文
共 11 条
[1]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[2]  
Berry M. V., 1989, GEOMETRIC PHASES PHY
[4]   CLASSICAL ADIABATIC ANGLES AND QUANTAL ADIABATIC PHASE [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (01) :15-27
[5]  
BOHM D, 1951, QUANTUM THEORY, P496
[6]  
BORN M, 1960, MECHANICS ATOM
[7]  
GOLDSTEIN H, 1980, CLASSICAL MECHANICS, P531
[8]   ANGLE VARIABLE HOLONOMY IN ADIABATIC EXCURSION OF AN INTEGRABLE HAMILTONIAN [J].
HANNAY, JH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02) :221-230
[9]  
LANDAU LD, 1969, MECHANICS, P154
[10]  
Nayfeh AH., 1973, PERTURBATION METHODS