THEORY AND ALGORITHMS FOR PLAN MERGING

被引:77
作者
FOULSER, DE
LI, M
YANG, Q
机构
[1] UNIV WATERLOO,DEPT COMP SCI,WATERLOO N2L 3G1,ONTARIO,CANADA
[2] SILICON GRAPH COMP SYST,MT VIEW,CA 94039
基金
加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
D O I
10.1016/0004-3702(92)90016-Q
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Merging operators in a plan can yield significant savings in the cost to execute a plan. This paper provides a formal theory for plan merging and presents both optimal and efficient heuristic algorithms for finding minimum cost merged plans. The optimal plan merging algorithm applies a dynamic programming method to handle multiple linear plans and is extended to partially ordered plans in a novel way. Furthermore, with worst-case and average-case complexity analysis and empirical tests, we demonstrate that efficient and well-behaved approximation algorithms are applicable for optimizing plans with large sizes.
引用
收藏
页码:143 / 181
页数:39
相关论文
共 19 条
[1]   PLANNING FOR CONJUNCTIVE GOALS [J].
CHAPMAN, D .
ARTIFICIAL INTELLIGENCE, 1987, 32 (03) :333-377
[2]  
DERFEE EH, 1987, P IJCAI 87 MILAN, P875
[3]  
Garey MR., 1979, COMPUTERS INTRACTABI
[4]  
HAYES CC, 1989, P IJCAI 89 DETROIT
[5]   A VALIDATION-STRUCTURE-BASED THEORY OF PLAN MODIFICATION AND REUSE [J].
KAMBHAMPATI, S ;
HENDLER, JA .
ARTIFICIAL INTELLIGENCE, 1992, 55 (2-3) :193-258
[6]  
KAMBHAMPATI S, 1990, P AAAI 90 BOSTON
[7]  
KARINTHI R, IN PRESS J APPL ARTI
[8]  
KNOBLOCK CA, 1991, P AAAI 91 ANAHEIM
[9]  
LI M, 1988, 3RD P IEEE C STRUCT, P80
[10]  
NAU DS, 1990, 1990 P DARPA WORKSH, P160