COMPARISON OF PRIMARY AND SECONDARY STIMULATION OF MALE RATS BY ESTRADIOL IN TERMS OF PROLACTIN SYNTHESIS AND MESSENGER-RNA ACCUMULATION IN THE PITUITARY

被引:38
作者
SEO, H [1 ]
REFETOFF, S [1 ]
VASSART, G [1 ]
BROCAS, H [1 ]
机构
[1] FREE UNIV BRUSSELS,FAC MED,INST RECH INTERDISCIPLINAIRE,B-1000 BRUSSELS,BELGIUM
关键词
D O I
10.1073/pnas.76.2.824
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Male rats received acute or chronic primary or acute secondary stimulation with estradiol, and the effects on pituitary prolactin synthesis and its mRNA accumulation were examined. Prolactin synthesis was determined by the in vitro incorporation of [3H]leucine into prolactin over a period of 1 hr. Prolactin mRNA was measured both by cell-free translation in a nuclease-treated rabbit reticulocyte lysate and by hybridization to the complementary DNA. The latter two methods gave similar results under all experimental conditions. Acute primary stimulation with estradiol produced a significant increase in pituitary prolactin mRNA accumulation at 12 hr, which further increased by 2- to 3-fold over the next 48 hr. In contrast, no increase in prolactin synthesis was observed during the first 24 hr. Chronic stimulation with estradiol induced increases of both prolactin synthesis and prolactin mRNA that were quantitatively indistinguishable over the period of 1-4 weeks, reaching a plateau at 5-fold the basal values. By the 13th day after withdrawal of therapy both prolactin synthesis and mRNA had returned to the prestimulation levels. When the effects of estradiol on previously unexposed and estrogen withdrawn animals were compared, it was found that secondary stimulation not only produced a more rapid accumulation of the prolactin mRNA but also abolished the lag period of prolactin synthesis observed during the primary estrogen stimulation. These data demonstrate a lag in the endogenous translation of newly accumulated pituitary prolactin mRNA translatable in vitro after primary estrogen stimulation of male rats. The mechanism for the abolition of this lag during the secondary stimulation is not known.
引用
收藏
页码:824 / 828
页数:5
相关论文
共 39 条