HELIX FOLDING SIMULATIONS WITH VARIOUS INITIAL CONFORMATIONS

被引:40
作者
SUNG, SS
机构
[1] Research Institute, Cleveland Clinic Foundation, Ohio
关键词
D O I
10.1016/S0006-3495(94)80973-7
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Using a solvent-referenced energy calculation, a 16-residue peptide with alanine side chains folded into predominantly alpha-helical conformations during constant temperature (274 K) simulations. From different initial conformations, helical conformations were reached and the multiple energy minima did not become a serious problem. Under the same conditions, the simulation did not indiscriminately fold a sequence such as polyglycine into stable helices. Interesting observations from the simulations relate to the folding mechanism. The electrostatic interactions between the successive amides favored extended conformations (or beta strands) and caused energy barriers to helix folding. beta-bends were observed as intermediates during helix nucleation. The helix propagation toward the C-terminus seemed faster than that toward the N-terminus, In helical conformations, hydrogen bond oscillation between the i,i+ 4 and the i,i+3 patterns was observed. The i,i+3 hydrogen bonds occurred more frequently during helix propagation and deformation near both ends of the helical segment.
引用
收藏
页码:1796 / 1803
页数:8
相关论文
共 45 条
[1]  
[Anonymous], 1970, MACROMOLECULES
[2]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[3]  
BROOKS BR, 1989, CHEM SCRIPTA, V29A, P165
[4]   PREDICTION OF THE FOLDING OF SHORT POLYPEPTIDE SEGMENTS BY UNIFORM CONFORMATIONAL SAMPLING [J].
BRUCCOLERI, RE ;
KARPLUS, M .
BIOPOLYMERS, 1987, 26 (01) :137-168
[5]  
CASTEEL KM, 1993, BIOPHYS J, V64, pA378
[6]   LARGE DIFFERENCES IN THE HELIX PROPENSITIES OF ALANINE AND GLYCINE [J].
CHAKRABARTTY, A ;
SCHELLMAN, JA ;
BALDWIN, RL .
NATURE, 1991, 351 (6327) :586-588
[7]   VANDERWAALS PICTURE OF LIQUIDS, SOLIDS, AND PHASE-TRANSFORMATIONS [J].
CHANDLER, D ;
WEEKS, JD ;
ANDERSEN, HC .
SCIENCE, 1983, 220 (4599) :787-794
[8]   SIDE-CHAIN ENTROPY OPPOSES ALPHA-HELIX FORMATION BUT RATIONALIZES EXPERIMENTALLY DETERMINED HELIX-FORMING PROPENSITIES [J].
CREAMER, TP ;
ROSE, GD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (13) :5937-5941
[9]   MOLECULAR-DYNAMICS SIMULATIONS OF HELIX DENATURATION [J].
DAGGETT, V ;
LEVITT, M .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 223 (04) :1121-1138
[10]   A MOLECULAR-DYNAMICS SIMULATION OF POLYALANINE - AN ANALYSIS OF EQUILIBRIUM MOTIONS AND HELIX COIL TRANSITIONS [J].
DAGGETT, V ;
KOLLMAN, PA ;
KUNTZ, ID .
BIOPOLYMERS, 1991, 31 (09) :1115-1134