IMPORTANCE-WEIGHTED MARGINAL BAYESIAN POSTERIOR DENSITY-ESTIMATION

被引:70
作者
CHEN, MH
机构
关键词
CONDITIONAL DENSITY ESTIMATION; KERNEL DENSITY ESTIMATION; MARKOV CHAIN SAMPLING; MONTE CARLO; SIMULATION;
D O I
10.2307/2290907
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Markov chain sampling schemes generate dependent observations {Theta(i), 0 less than or equal to i less than or equal to n} from a full joint posterior distribution pi(theta\data). Frequently, only certain marginals of this full posterior density are of interest; thus an interesting problem is how to estimate the marginal posterior densities based on the dependent observations {Theta(i), 0 less than or equal to i less than or equal to n} from pi(theta\data). We propose a new importance-weighted marginal density estimation (IWMDE) method. An IWMDE is obtained by averaging many dependent observations of the ratio of the full joint posterior densities multiplied by a weighting conditional density w. The asymptotic properties for the IWMDE and the guidelines for choosing a weighting conditional density,v are also considered. A bivariate normal model and a constrained linear multiple regression model are used to illustrate how to derive the IWMDE's for the marginal posterior densities.
引用
收藏
页码:818 / 824
页数:7
相关论文
共 17 条
[1]   HIT-AND-RUN ALGORITHMS FOR GENERATING MULTIVARIATE DISTRIBUTIONS [J].
BELISLE, CJP ;
ROMEIJN, HE ;
SMITH, RL .
MATHEMATICS OF OPERATIONS RESEARCH, 1993, 18 (02) :255-266
[2]  
CHEN MH, 1993, J COMPUT GRAPH STAT, V2, P1
[3]  
CHEN MH, 1992, 9221 PURD U CTR STAT
[4]   BAYESIAN-ANALYSIS OF CONSTRAINED PARAMETER AND TRUNCATED DATA PROBLEMS USING GIBBS SAMPLING [J].
GELFAND, AE ;
SMITH, AFM ;
LEE, TM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (418) :523-532
[5]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[6]  
Gelman A., 1992, STAT SCI, V7, P457, DOI [10.1214/ss/1177011136, DOI 10.1214/SS/1177011136]
[7]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[8]   BAYESIAN-INFERENCE IN ECONOMETRIC-MODELS USING MONTE-CARLO INTEGRATION [J].
GEWEKE, J .
ECONOMETRICA, 1989, 57 (06) :1317-1339
[9]  
Hammersley J.M., 1964, MONTE CARLO METHODS, P50
[10]  
HASTINGS WK, 1970, BIOMETRIKA, V57, P97, DOI 10.1093/biomet/57.1.97