MULTIGRID METHODS FOR STEADY-STATE DIFFUSION IN RANDOM-MEDIA

被引:1
作者
BRAESS, D [1 ]
BIEBIGHAUSER, M [1 ]
GRASSBERGER, P [1 ]
LEUVERINK, R [1 ]
机构
[1] UNIV GESAMTHSCH WUPPERTAL,DEPT PHYS,W-5600 WUPPERTAL 1,GERMANY
关键词
D O I
10.1006/jcph.1993.1129
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We apply multi-grid methods to study steady state densities for hopping diffusion in two-dimensional random media. We show that these methods are very efficient. For our fastest algorithm, which also uses overrelaxation, CPU times increase as L2.2 in order to reach equilibrium on square lattices of size L × L with a prescribed accuracy. Compared to standard Gauss-Seidel methods, this is at least an improvement by a factor α L For L = 128, the improvement is about a factor of 10 and even more than 80 if overrelaxation is added. © 1993 Academic Press, Inc.
引用
收藏
页码:118 / 123
页数:6
相关论文
共 22 条
[1]   EXCITATION DYNAMICS IN RANDOM ONE-DIMENSIONAL SYSTEMS [J].
ALEXANDER, S ;
BERNASCONI, J ;
SCHNEIDER, WR ;
ORBACH, R .
REVIEWS OF MODERN PHYSICS, 1981, 53 (02) :175-198
[2]  
BIEBIGHAUSER M, 1990, THESIS BOCHUM
[3]   A NEW CONVERGENCE PROOF FOR THE MULTIGRID METHOD INCLUDING THE V-CYCLE [J].
BRAESS, D ;
HACKBUSCH, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (05) :967-975
[4]  
Braess D., 1988, COMPUT MECH, V3, P321
[5]   RANDOM-WALK IN RANDOM ENVIRONMENT - A COUNTEREXAMPLE [J].
BRAMSON, M ;
DURRETT, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 119 (02) :199-211
[6]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[7]   DIFFUSION ON A RANDOM LATTICE - WEAK-DISORDER EXPANSION IN ARBITRARY DIMENSION [J].
DERRIDA, B ;
LUCK, JM .
PHYSICAL REVIEW B, 1983, 28 (12) :7183-7190
[8]   RANDOM-WALKS IN TWO-DIMENSIONAL RANDOM-ENVIRONMENTS WITH CONSTRAINED DRIFT FORCES [J].
FISHER, DS ;
FRIEDAN, D ;
QUI, ZG ;
SHENKER, SJ ;
SHENKER, SH .
PHYSICAL REVIEW A, 1985, 31 (06) :3841-3845
[9]   EQUILIBRIUM DISTRIBUTIONS FOR RANDOM WALKERS IN RANDOM-MEDIA [J].
GRASSBERGER, P ;
LEUVERINK, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (05) :773-780
[10]   ANALYSIS OF A DAMPED NONLINEAR MULTILEVEL METHOD [J].
HACKBUSCH, W ;
REUSKEN, A .
NUMERISCHE MATHEMATIK, 1989, 55 (02) :225-246