SPECIAL POINTS OF (2+1)-REDUCIBLE QUASILATTICES IN 3-DIMENSIONS

被引:12
作者
NIIZEKI, K
机构
[1] Dept. of Phys., Tohoku Univ., Sendai
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 20期
关键词
D O I
10.1088/0305-4470/23/20/018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Presents a complete classification of special points of five-dimensional (5D) Bravais lattices which yield with the cut-and-projection method (2+1)-reducible quasilattices in 3D; the quasilattices are periodic along the c axis but quasiperiodic only along the plane perpendicular to it. There exist five Bravais classes of 5D lattices associated with the (2+1)-reducible quasilattices, namely primitive octagonal, decagonal and dodecagonal lattices, the centred octagonal lattice and the pentagonal lattice. The author also discusses the special points of the reciprocal lattices of these 5D lattices.
引用
收藏
页码:4569 / 4580
页数:12
相关论文
共 11 条
[1]  
Coxeter H.S.M., 1973, REGULAR POLYTOPES
[2]  
GAHLER F, 1986, J PHYS-PARIS, V47, P115
[3]  
GAHLER F, 1990, QUASICRYSTALS INCOMM, P69
[4]  
Henley C. L., 1987, Comments on Condensed Matter Physics, V13, P59
[5]   APERIODIC CRYSTALS - A CONTRADICTIO IN TERMINIS [J].
JANSSEN, T .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 168 (02) :55-113
[6]  
Luck R., 1987, Materials Science Forum, V22-24, P231, DOI 10.4028/www.scientific.net/MSF.22-24.231
[7]   SELF-SIMILARITY OF QUASILATTICES IN 2 DIMENSIONS .1. THE N-GONAL QUASILATTICE [J].
NIIZEKI, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (02) :193-204
[8]   SPECIAL POINTS IN THE RECIPROCAL SPACE OF AN ICOSAHEDRAL QUASI-CRYSTAL AND THE QUASI-DISPERSION RELATION OF ELECTRONS [J].
NIIZEKI, K ;
AKAMATSU, T .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (12) :2759-2771
[9]   SELF-SIMILARITY OF QUASILATTICES IN 2 DIMENSIONS .2. THE NON-BRAVAIS-TYPE N-GONAL QUASILATTICE [J].
NIIZEKI, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (02) :205-218
[10]   A CLASSIFICATION OF SPECIAL POINTS OF ICOSAHEDRAL QUASILATTICES [J].
NIIZEKI, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (20) :4295-4302