THE ONSET OF CHAOS, A SOLUBLE MODEL, AND THE JOSEPHSON-JUNCTION EQUATION

被引:6
作者
CICOGNA, G
机构
关键词
D O I
10.1016/0375-9601(88)90663-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:98 / 100
页数:3
相关论文
共 17 条
[1]  
Arnold V.I., 1964, SOV MATH DOKL, V5, P581
[2]   PREDICTION OF CHAOS IN A JOSEPHSON JUNCTION BY THE MELNIKOV-FUNCTION TECHNIQUE [J].
BARTUCCELLI, M ;
CHRISTIANSEN, PL ;
PEDERSEN, NF ;
SOERENSEN, MP .
PHYSICAL REVIEW B, 1986, 33 (07) :4686-4691
[3]   A THEORETICAL PREDICTION OF THE THRESHOLD FOR CHAOS IN A JOSEPHSON JUNCTION [J].
CICOGNA, G .
PHYSICS LETTERS A, 1987, 121 (8-9) :403-406
[4]  
CICOGNA G, UNPUB EFFECTS SYMMET
[5]   EFFECT OF A PERIODIC PERTURBATION ON RADIO-FREQUENCY MODEL OF JOSEPHSON JUNCTION [J].
GENCHEV, ZD ;
IVANOV, ZG ;
TODOROV, BN .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1983, 30 (09) :633-636
[6]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42
[7]   HORSESHOES IN PERTURBATIONS OF HAMILTONIAN-SYSTEMS WITH 2 DEGREES OF FREEDOM [J].
HOLMES, PJ ;
MARSDEN, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 82 (04) :523-544
[8]   AVERAGING AND CHAOTIC MOTIONS IN FORCED-OSCILLATIONS [J].
HOLMES, PJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 38 (01) :65-80
[9]   MELNIKOV METHOD AND ARNOLD DIFFUSION FOR PERTURBATIONS OF INTEGRABLE HAMILTONIAN-SYSTEMS [J].
HOLMES, PJ ;
MARSDEN, JE .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (04) :669-675