HETEROCLINIC ORBITS IN A SPHERICALLY INVARIANT SYSTEM

被引:23
作者
ARMBRUSTER, D [1 ]
CHOSSAT, P [1 ]
机构
[1] UNIV NICE,MATH LAB,CNRS,UA 168,F-06034 NICE,FRANCE
来源
PHYSICA D | 1991年 / 50卷 / 02期
关键词
D O I
10.1016/0167-2789(91)90173-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence and stability of structurally stable heteroclinic cycles are discussed in a codimension-2 bifurcation problem with O(3)-symmetry, when the critical spherical modes l = 1 and l = 2 occur simultaneously. Several types of heteroclinic cycles are found which may explain aperiodic attractors found in numerical simulations for the onset of convection in a self-gravitating fluid in a spherical shell.
引用
收藏
页码:155 / 176
页数:22
相关论文
共 16 条
[1]  
[Anonymous], 1988, SINGULARITIES GROUPS
[2]   HETEROCLINIC CYCLES AND MODULATED TRAVELING WAVES IN SYSTEMS WITH O(2) SYMMETRY [J].
ARMBRUSTER, D ;
GUCKENHEIMER, J ;
HOLMES, P .
PHYSICA D, 1988, 29 (03) :257-282
[3]  
ARMBRUSTER D, 1989, P INT C BIFURCATION
[4]  
CHOSSAT P, 1983, CR ACAD SCI I-MATH, V297, P469
[5]  
CHOSSAT P, 1982, THESIS U NICE
[6]  
DOEDEL E, 1986, AUTO 86 USERS MANUAL
[8]   STATIC, WAVE-LIKE, AND CHAOTIC THERMAL-CONVECTION IN SPHERICAL GEOMETRIES [J].
FRIEDRICH, R ;
HAKEN, H .
PHYSICAL REVIEW A, 1986, 34 (03) :2100-2120
[9]  
Ghil M., 1987, TOPICS GEOPHYSICAL F
[10]   BIFURCATIONS WITH O(3) SYMMETRY INCLUDING APPLICATIONS TO THE BENARD-PROBLEM [J].
GOLUBITSKY, M ;
SCHAEFFER, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (01) :81-111