LEE DISTANCE AND TOPOLOGICAL PROPERTIES OF K-ARY N-CUBES

被引:183
作者
BOSE, B
BROEG, B
KWON, Y
ASHIR, Y
机构
[1] WESTERN OREGON STATE COLL,DEPT COMP SCI,MONMOUTH,OR 97361
[2] ROK AF ACAD,DEPT COMP SCI,SEOUL,SOUTH KOREA
[3] UNIV BAHRAIN,DEPT COMP SCI,ISA TOWN,BAHRAIN
基金
美国国家科学基金会;
关键词
K-ARY N-CUBES; LEE DISTANCE; ERROR-CORRECTING CODES; GRAY CODES; HAMILTONIAN CYCLES; ROUTING; BROADCASTING; EMBEDDING;
D O I
10.1109/12.403718
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider various topological properties of a k-ary n-cube (Q(n)(k)) using Lee distance. We feel that Lee distance is a natural metric for defining and studying a Q(n)(k). After defining a Q(n)(k) graph using Lee distance, we show how to find all disjoint paths between any two nodes. Given a sequence of radix k numbers, a function mapping the sequence to a Gray code sequence is presented, and this function is used to generate a Hamiltonian cycle. Embedding the graph of a mesh and the graph of a binary hypercube into the graph of a Q(n)(k) is considered. Using a k-ary Gray code, we show the embedding of a k(n1) x k(n2) x ... x k(nm)-dimensional mesh into a Q(n)(k) where n = Sigma(i=1)(m)n(i). Then using a single digit, 4-ary reflective Gray code, we demonstrate embedding a Q(n) into a Q([n/2]) (4). We look at how Lee distance may be applied to the problem of resource placement in a Q(n)(k) by using a Lee distance error-correcting code. Although the results in this paper are only preliminary, Lee distance error-correcting codes have not been applied previously to this problem. Finally, we consider how Lee distance can be applied to message routing and single-node broadcasting in a Q(n)(k). In this section we present two single-node broadcasting algorithms that are optimal when single-port and multi-port I/O is used.
引用
收藏
页码:1021 / 1030
页数:10
相关论文
共 17 条
[1]  
BERLEKAMP ER, 1968, ALGEBRAIC CODING THE
[2]  
BHUYAN LN, 1984, IEEE T COMPUT, V33, P323, DOI 10.1109/TC.1984.1676437
[3]  
BORKAR S, 1988, NOV P SUP 88 ORL, P330
[4]  
CHEN HL, 1991, 1991 P INT C PAR PRO, V1, P517
[5]  
CHIU GM, 1990, 5TH P DISTR MEM COMP, V2, P894
[6]  
Dally W. J., 1989, Information Processing 89. Proceedings of the IFIP 11th World Computer Congress, P1147
[7]   THE MESSAGE-DRIVEN PROCESSOR - A MULTICOMPUTER PROCESSING NODE WITH EFFICIENT MECHANISMS [J].
DALLY, WJ ;
FISKE, JAS ;
KEEN, JS ;
LETHIN, RA ;
NOAKES, MD ;
NUTH, PR ;
DAVISON, RE ;
FYLER, GA .
IEEE MICRO, 1992, 12 (02) :23-39
[8]  
Golomb S. W., 1968, Error correcting codes, P175
[9]  
LDIGHTON FT, 1992, INTRO PARALLEL ALGOR
[10]  
LIVINGSTON M, 1988, 3 C HYP CONC COMP AP, V1, P222