NONPERTURBATIVE (BUT APPROXIMATE) METHOD FOR SOLVING DIFFERENTIAL-EQUATIONS AND FINDING LIMIT-CYCLES

被引:49
作者
DELAMOTTE, B
机构
[1] Laboratoire de Physique Théorique et Hautes Energies, Université Paris 7, Tour 24-5 Itage, 75251 Paris Cedex 05
关键词
D O I
10.1103/PhysRevLett.70.3361
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A nonperturbative method for solving differential equations and for finding limit cycles is proposed and is illustrated on the anharmonic oscillator and on the Van der Pol equation. It is shown to give the amplitude, period, and equation of the limit cycle with a better accuracy than any perturbative results so far obtained.
引用
收藏
页码:3361 / 3364
页数:4
相关论文
共 9 条
[1]   POWER-SERIES EXPANSIONS FOR THE FREQUENCY AND PERIOD OF THE LIMIT-CYCLE OF THE VANDERPOL EQUATION [J].
ANDERSEN, CM ;
GEER, JF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (03) :678-693
[2]  
Andronov A.A., 1966, THEORY OSCILLATORS
[3]  
Bender Carl, 1999, ADV MATH METHODS SCI, V1
[4]  
Bogolyubov N. N., 1961, ASYMPTOTIC METHODS T
[5]  
Cole J. D., 1968, PERTURBATION METHODS
[6]   PERTURBATION ANALYSIS OF THE LIMIT-CYCLE OF THE FREE VANDERPOL EQUATION [J].
DADFAR, MB ;
GEER, J ;
ANDERSEN, CM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (05) :881-895
[7]  
Nayfeh A. H., 1981, INTRO PERTURBATION T
[8]  
Nayfeh AH, 1981, NONLINEAR OSCILLATIO
[9]  
Yan-qian Y., 1986, TRANSL MATH MONOGR A, V66