THE TRIANGLE CONDITION FOR PERCOLATION

被引:5
作者
HARA, T [1 ]
SLADE, G [1 ]
机构
[1] MCMASTER UNIV,DEPT MATH & STAT,HAMILTON L8S 4K1,ONTARIO,CANADA
关键词
D O I
10.1090/S0273-0979-1989-15827-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:269 / 273
页数:5
相关论文
共 17 条
[1]   UNIQUENESS OF THE INFINITE CLUSTER AND CONTINUITY OF CONNECTIVITY FUNCTIONS FOR SHORT AND LONG-RANGE PERCOLATION [J].
AIZENMAN, M ;
KESTEN, H ;
NEWMAN, CM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 111 (04) :505-531
[2]   TREE GRAPH INEQUALITIES AND CRITICAL-BEHAVIOR IN PERCOLATION MODELS [J].
AIZENMAN, M ;
NEWMAN, CM .
JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (1-2) :107-143
[3]  
BARSKY D, 1988, PERCOLATION CRITICAL
[4]   ON THE CRITICAL PROPERTIES OF THE EDWARDS AND THE SELF-AVOIDING WALK MODEL OF POLYMER-CHAINS [J].
BOVIER, A ;
FELDER, G ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1984, 230 (01) :119-147
[5]  
Broadbent S. R., 1957, P CAMBRIDGE PHIL SOC, V53, P629, DOI [10.1017/S030500410003 2680, DOI 10.1017/S0305004100032680]
[6]   SELF-AVOIDING WALK IN 5 OR MORE DIMENSIONS [J].
BRYDGES, D ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 97 (1-2) :125-148
[7]   ON THE UPPER CRITICAL DIMENSION OF BERNOULLI PERCOLATION [J].
CHAYES, JT ;
CHAYES, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 113 (01) :27-48
[8]  
Hammersley J. M., 1957, P CAMBRIDGE PHILOS S, V53, P642
[9]  
Hammersley J. M., 1959, CALCUL PROBABILITES, P17
[10]  
HARA T, 1989, MEAN FIELD CRITICAL