A PATH INTEGRAL FORMALISM OF COLLECTIVE MOTION

被引:17
作者
KURATSUJI, H
机构
来源
PROGRESS OF THEORETICAL PHYSICS | 1981年 / 65卷 / 01期
关键词
D O I
10.1143/PTP.65.224
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:224 / 240
页数:17
相关论文
共 34 条
[1]   ADIABATIC TIME-DEPENDENT HARTREE-FOCK THEORY OF COLLECTIVE MOTION IN FINITE SYSTEMS [J].
BARANGER, M ;
VENERONI, M .
ANNALS OF PHYSICS, 1978, 114 (1-2) :123-200
[3]   GENERATOR COORDINATE THEORY OF COLLECTIVE MOTION [J].
BRINK, DM ;
WEIGUNY, A .
NUCLEAR PHYSICS A, 1968, A120 (01) :59-&
[4]   DERIVATION OF AN ADIABATIC TIME-DEPENDENT HARTREE-FOCK FORMALISM FROM A VARIATIONAL PRINCIPLE [J].
BRINK, DM ;
GIANNONI, MJ ;
VENERONI, M .
NUCLEAR PHYSICS A, 1976, 258 (02) :237-256
[5]  
DOWKER JS, 1975, FUNCTIONAL INTEGRATI, P34
[6]  
Feynman R.P., 1965, QUANTUM MECH PATH IN
[7]   AN OPERATOR CALCULUS HAVING APPLICATIONS IN QUANTUM ELECTRODYNAMICS [J].
FEYNMAN, RP .
PHYSICAL REVIEW, 1951, 84 (01) :108-128
[8]  
FEYNMAN RP, 1948, REV MOD PHYS, V20, P369
[9]   HAMILTONIAN PATH-INTEGRAL METHODS [J].
GARROD, C .
REVIEWS OF MODERN PHYSICS, 1966, 38 (03) :483-&
[10]   GEOMETRY OF SYMMETRIZED STATES [J].
GILMORE, R .
ANNALS OF PHYSICS, 1972, 74 (02) :391-&