BIFURCATION STRUCTURES INTO CHAOS OF DELAY-DIFFERENTIAL EQUATIONS FOR A PASSIVE OPTICAL RING RESONATOR

被引:4
作者
HAGER, C
KAISER, F
机构
[1] Institute of Applied Physics - Nonlinear Dynamics, Technical University Darmstadt, Darmstadt, W-6100
来源
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY | 1992年 / 55卷 / 02期
关键词
D O I
10.1007/BF00324063
中图分类号
O59 [应用物理学];
学科分类号
摘要
The delay-differential equation system describing the passive optical ring cavity is investigated. A survey of different bifurcation scenarios into chaos of the solutions on one branch and specific transitions between different branches of the multistable system are discussed. Precipitation via a heteroclinic cycle and crisis induced intermittency are found.
引用
收藏
页码:132 / 137
页数:6
相关论文
共 13 条
[1]   LASER WITH FEEDBACK - AN OPTICAL IMPLEMENTATION OF COMPETING INSTABILITIES, SHILNIKOV CHAOS, AND TRANSIENT FLUCTUATION ENHANCEMENT [J].
ARECCHI, FT ;
GADOMSKI, W ;
LAPUCCI, A ;
MANCINI, H ;
MEUCCI, R ;
ROVERSI, JA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1988, 5 (05) :1153-1159
[2]   SELF-PULSING IN BISTABLE ABSORPTION [J].
BONIFACIO, R ;
GRONCHI, M ;
LUGIATO, LA .
OPTICS COMMUNICATIONS, 1979, 30 (01) :129-133
[3]   CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1983, 7 (1-3) :181-200
[4]   CRITICAL EXPONENTS FOR CRISIS-INDUCED INTERMITTENCY [J].
GREBOGI, C ;
OTT, E ;
ROMEIRAS, F ;
YORKE, JA .
PHYSICAL REVIEW A, 1987, 36 (11) :5365-5380
[5]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[6]   STABILITY PROPERTIES OF NONLINEAR DELAY SYSTEMS AND THE BREAKDOWN OF THE ADIABATIC APPROXIMATION [J].
HAWDON, BJ ;
OGORMAN, J ;
HEFFERNAN, DM .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1991, 46 (08) :686-690
[7]   MULTIPLE-VALUED STATIONARY STATE AND ITS INSTABILITY OF THE TRANSMITTED LIGHT BY A RING CAVITY SYSTEM [J].
IKEDA, K .
OPTICS COMMUNICATIONS, 1979, 30 (02) :257-261
[8]  
KAISER F, 1989, PHYS LETT A, V139, P33
[9]   LYAPUNOV ANALYSIS OF THE RUELLE-TAKENS ROUTE TO CHAOS IN AN OPTICAL RETARDED DIFFERENTIAL SYSTEM [J].
LEBERRE, M ;
RESSAYRE, E ;
TALLET, A .
OPTICS COMMUNICATIONS, 1989, 72 (1-2) :123-128
[10]   HIGH-DIMENSION CHAOTIC ATTRACTORS OF A NONLINEAR RING CAVITY [J].
LEBERRE, M ;
RESSAYRE, E ;
TALLET, A ;
GIBBS, HM .
PHYSICAL REVIEW LETTERS, 1986, 56 (04) :274-277