A SIMILARITY SOLUTION FOR THE DIRECT INTERACTION APPROXIMATION AND ITS RELATIONSHIP TO RENORMALIZATION-GROUP ANALYSES OF TURBULENCE

被引:13
作者
WOODRUFF, SL [1 ]
机构
[1] BROWN UNIV,CTR FLUID MECH,PROVIDENCE,RI 02912
关键词
D O I
10.1063/1.868130
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The application of Kraichnan's Direct Interaction Approximation [J. Fluid Mech. 5, 497 (1959)] to the inertial range of Navier-Stokes turbulence is examined. A similarity form valid in the inertial range is presented, along with several approximations permitting explicit solutions. The relationship of the present results to some recent renormalization-group calculations is discussed. It is shown that these renormalization-group calculations misrepresent the Direct Interaction Approximation's nonlinear interaction and that the addition of an artificial stirring force is unnecessary.
引用
收藏
页码:3051 / 3062
页数:12
相关论文
共 34 条
[1]   MATHEMATICAL-MODELS WITH EXACT RENORMALIZATION FOR TURBULENT TRANSPORT [J].
AVELLANEDA, M ;
MAJDA, AJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 131 (02) :381-429
[2]   APPROXIMATE AND EXACT RENORMALIZATION THEORIES FOR A MODEL FOR TURBULENT TRANSPORT [J].
AVELLANEDA, M ;
MAJDA, AJ .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (01) :41-57
[3]  
Barenblatt G, 1979, SIMILARITY SELF SIMI
[4]  
Bluman G. W., 1974, APPL MATH SCI, V13
[5]   COLORED STOCHASTIC NOISES IN THE RENORMALIZATION-GROUP APPROACH OF TURBULENCE [J].
CARATI, D .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (10) :1854-1858
[6]   SWEEPING DECORRELATION IN ISOTROPIC TURBULENCE [J].
CHEN, SY ;
KRAICHNAN, RH .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (12) :2019-2024
[7]   ANALYTICAL THEORIES OF TURBULENCE AND THE EPSILON-EXPANSION [J].
DANNEVIK, WP ;
YAKHOT, V ;
ORSZAG, SA .
PHYSICS OF FLUIDS, 1987, 30 (07) :2021-2029
[8]   ENERGY-SPECTRA OF CERTAIN RANDOMLY-STIRRED FLUIDS [J].
DEDOMINICIS, C ;
MARTIN, PC .
PHYSICAL REVIEW A, 1979, 19 (01) :419-422
[9]   REMARKS ON THE RENORMALIZATION-GROUP IN STATISTICAL FLUID-DYNAMICS [J].
FOURNIER, JD ;
FRISCH, U .
PHYSICAL REVIEW A, 1983, 28 (02) :1000-1002
[10]  
Goldenfeld N., 1989, Journal of Scientific Computing, V4, P355, DOI 10.1007/BF01060993