ON THE FRACTAL DIMENSION OF SELF-AFFINE PROFILES

被引:78
作者
MOREIRA, JG [1 ]
DASILVA, JKL [1 ]
KAMPHORST, SO [1 ]
机构
[1] UNIV FED MINAS GERAIS,INST CIENCIAS EXATAS,DEPT MATEMAT,BR-30161 BELO HORIZONT,MG,BRAZIL
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 24期
关键词
D O I
10.1088/0305-4470/27/24/018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One-dimensional profiles f(x) can be characterized by a Minkowski-Bouligand dimension D and by a scale-dependent generalized roughness W(f, epsilon). This roughness can be defined as the dispersion around a chosen fit to f(x) in an epsilon-scale. It is shown that D = lim(epsilon-->0)[2 - ln W(f, epsilon)/ln epsilon] holds for profiles nowhere differentiable. This establishes a close connection between the roughness and the fractal dimension and proves that D = 2 - H for self-affine profiles (H is the roughness or Hurst exponent). Two numerical algorithms based on the roughness, one around the local average (f(x))(epsilon) (usual roughness) and the other around the local RMS Straight line (a generalized roughness), are discussed. The estimates of D for standard self-affine profiles are reliable and robust, especially for the last method.
引用
收藏
页码:8079 / 8089
页数:11
相关论文
共 16 条
  • [1] BOULIGAND G, 1929, B SCI MATH, V2, P185
  • [2] EVALUATING THE FRACTAL DIMENSION OF PROFILES
    DUBUC, B
    QUINIOU, JF
    ROQUESCARMES, C
    TRICOT, C
    ZUCKER, SW
    [J]. PHYSICAL REVIEW A, 1989, 39 (03) : 1500 - 1512
  • [3] FALCONER K.J., 1990, FRACTAL GEOMETRY
  • [4] DYNAMIC SCALING AND PHASE-TRANSITIONS IN INTERFACE GROWTH
    FAMILY, F
    [J]. PHYSICA A, 1990, 168 (01): : 561 - 580
  • [5] Family F., 1991, DYNAMICS FRACTAL SUR
  • [6] Feder J., 1988, FRACTALS
  • [7] EXPERIMENTAL MEASUREMENTS OF THE ROUGHNESS OF BRITTLE CRACKS
    MALOY, KJ
    HANSEN, A
    HINRICHSEN, EL
    ROUX, S
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (02) : 213 - 215
  • [8] Mandelbrot B. B., 1982, FRACTAL GEOMETRY NAT, P1
  • [9] Mandelbrot B. B., 1986, FRACTALS PHYS, P3, DOI [10.1016/B978-0-444-86995-1.50004-4, DOI 10.1016/B978-0-444-86995-1.50004-4]
  • [10] SELF-AFFINE FRACTALS AND FRACTAL DIMENSION
    MANDELBROT, BB
    [J]. PHYSICA SCRIPTA, 1985, 32 (04) : 257 - 260