NOETHERS THEOREM IN CLASSICAL FIELD-THEORY

被引:28
作者
ROSEN, J
机构
关键词
D O I
10.1016/0003-4916(72)90180-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:349 / &
相关论文
共 10 条
[1]   CLASSICAL AND QUANTUM FIELD THEORIES IN THE LAGRANGIAN FORMALISM [J].
BERGMANN, PG ;
SCHILLER, R .
PHYSICAL REVIEW, 1953, 89 (01) :4-16
[2]   INVERSION OF NOETHERS THEOREM IN LAGRANGIAN FORMALISM .2. CLASSICAL FIELD THEORY [J].
CANDOTTI, E ;
PALMIERI, C ;
VITALE, B .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1970, 70 (02) :233-+
[3]  
COURANT R, 1953, METHODS MATHEMATICAL, V1, P194
[4]   LOCAL CONSERVATION LAWS IN GENERALLY COVARIANT THEORIES [J].
FLETCHER, JG .
REVIEWS OF MODERN PHYSICS, 1960, 32 (01) :65-87
[5]   STRONG CONSERVATION LAWS AND EQUATIONS OF MOTION IN COVARIANT FIELD THEORIES [J].
GOLDBERG, JN .
PHYSICAL REVIEW, 1953, 89 (01) :263-272
[6]   HAMILTON PRINCIPLE AND THE CONSERVATION THEOREMS OF MATHEMATICAL PHYSICS [J].
HILL, EL .
REVIEWS OF MODERN PHYSICS, 1951, 23 (03) :253-260
[7]   ON INVERSION OF NOETHERS THEOREM IN LAGRANGIAN FORMALISM [J].
PALMIERI, C ;
VITALE, B .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1970, 66 (01) :299-+
[8]  
Rosen J., 1971, International Journal of Theoretical Physics, V4, P287, DOI 10.1007/BF00674282
[9]  
STEUDEL H, 1967, ANN PHYS-BERLIN, V20, P110
[10]  
STEUDEL H, 1966, THESIS FRIEDRICHSCHI