GENERAL GITTINS INDEX PROCESSES IN DISCRETE-TIME

被引:10
作者
ELKAROUI, N [1 ]
KARATZAS, I [1 ]
机构
[1] COLUMBIA UNIV,DEPT STAT,NEW YORK,NY 10027
关键词
DYNAMIC ALLOCATION; OPTIMAL STOPPING;
D O I
10.1073/pnas.90.4.1232
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We combine the formulation of Mandelbaum [Mandelbaum, A. (1986) Probab. Theory Rel. Fields 71, 129-147] with ideas from Whittle [Whittle, P. (1980) J. R. Stat. Soc. B 42, 143-149] to obtain a simple and constructive proof for the optimality of Gittins index processes in the general, non-markovian dynamic allocation (or ''multi-armed bandit'') problem. Our approach also provides an explicit expression for the value of this problem.
引用
收藏
页码:1232 / 1236
页数:5
相关论文
共 9 条
[1]  
GITTINS JC, 1979, J ROY STAT SOC B MET, V41, P148
[2]  
GITTINS JC, 1989, MULTIARMED BANDITS A
[3]   OPTIMAL STOPPING AND SUPERMARTINGALES OVER PARTIALLY ORDERED SETS [J].
MANDELBAUM, A ;
VANDERBEI, RJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (02) :253-264
[4]   DISCRETE MULTIARMED BANDITS AND MULTIPARAMETER PROCESSES [J].
MANDELBAUM, A .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 71 (01) :129-147
[5]  
Neveu J., 1975, DISCRETE PARAMETER M
[6]   A LEMMA ON THE MULTIARMED BANDIT PROBLEM [J].
TSITSIKLIS, JN .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (06) :576-577
[7]   EXTENSIONS OF THE MULTIARMED BANDIT PROBLEM - THE DISCOUNTED CASE [J].
VARAIYA, PP ;
WALRAND, JC ;
BUYUKKOC, C .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (05) :426-439
[8]  
WHITTLE P, 1980, J ROY STAT SOC B MET, V42, P143
[9]  
Whittle P., 1982, OPTIMIZATION TIME, VVolume 1