ON THE ARG MAX OF A GAUSSIAN PROCESS

被引:3
作者
ARCONES, MA [1 ]
机构
[1] UNIV CONNECTICUT,STORRS,CT 06268
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-7152(92)90156-Y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is shown that if {X(t):t is-an-element-of T} is a Gaussian process such that (T, rho) is a separable metric space, where rho(t, s) = Cov(X(t), X(s)), then, with probability 1, no sample path of X can achieve its supremum at two distinct points of T. Conversely if Pr*{sup(t is-an-element-of T)X(t) < infinity} > 0 then (T, rho) is a separable pseudometric space.
引用
收藏
页码:373 / 374
页数:2
相关论文
共 5 条
[1]  
Dudley R. M., 1967, J FUNCT ANAL, V1, P290, DOI DOI 10.1016/0022-1236(67)90017-1
[2]  
FERNIQUE X, 1970, CR ACAD SCI A MATH, V270, P1698
[3]   ZERO-ONE LAWS FOR GAUSSIAN PROCESSES [J].
KALLIANPUR, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 149 (01) :199-+
[4]   CUBE ROOT ASYMPTOTICS [J].
KIM, JY ;
POLLARD, D .
ANNALS OF STATISTICS, 1990, 18 (01) :191-219
[5]  
SUDAKOV VN, 1969, SOVIET MATH DOKL, V0010, P00310