GLUCOCORTICOIDS, HIPPOCAMPAL CORTICOSTEROID RECEPTOR GENE-EXPRESSION AND ANTIDEPRESSANT TREATMENT - RELATIONSHIP WITH SPATIAL-LEARNING IN YOUNG AND AGED RATS

被引:144
作者
YAU, JLW
OLSSON, T
MORRIS, RGM
MEANEY, MJ
SECKL, JR
机构
[1] UMEA UNIV,DEPT MED,UMEA,SWEDEN
[2] CTR NEUROSCI,EDINBURGH,MIDLOTHIAN,SCOTLAND
基金
英国惠康基金;
关键词
D O I
10.1016/0306-4522(94)00612-9
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The emergence of cognitive deficits in a subgroup of aged rats is associated with increased hypothalamic-pituitary-adrenal axis activity, decreased hippocampal mineralocorticoid and/or glucocorticoid receptor gene expression and neuronal loss. Short-term treatment with antidepressant drugs in young rats increases hippocampal corticosteroid receptor gene expression. In this study, the effects of chronic antidepressant administration on hippocampal mineralocorticoid and glucocorticoid receptor gene expression and spatial memory in young and aged rats were investigated. Young (eight months) and old (22 +/- 1 months) Lister-hooded rats were ranked according to watermaze performance. Matched pairs of rats were treated with amitriptyline (10 mg/kg) or saline daily for nine weeks, then reassessed in the watermaze. Amitriptyline significantly improved spatial memory in the young rats (33% increase in transfer test time) and increased hippocampal mineralocorticoid, but not glucocorticoid receptor messenger RNA expression. By contrast, in aged rats, amitriptyline had no effect on spatial memory or hippocampal corticosteroid receptor gene expression, either in cognitively unimpaired or cognitively-impaired animals. In aged rats, basal plasma corticosterone levels, which were significantly higher than in young animals, correlated negatively with spatial memory, while hippocampal glucocorticoid receptor mRNA expression correlated negatively with plasma corticosterone levels and positively with spatial memory. Amitriptyline had no significant effect on basal morning plasma corticosterone levels in either young or aged rats, but significantly decreased evening corticosterone levels in aged rats. Our data support the notion that corticosterone exerts a concentration-dependent biphasic influence, via selective activation of hippocampal mineralocorticoid and glucocorticoid receptor, on spatial memory. Amitriptyline improves spatial memory in young rats and increases hippocampal mineralocorticoid receptor gene expression. The lack of amitriptyline effect on spatial memory in aged rats may reflect decreased plasticity of both the synaptic processes underlying spatial memory and the regulation of hippocampal mineralocorticoid/glucocorticoid receptor expression, with mineralocorticoid receptors fully occupied due to elevated basal plasma corticosterone levels (in part a consequence of inadequate glucocorticoid receptor function).
引用
收藏
页码:571 / 581
页数:11
相关论文
共 61 条
[1]   THE DEVELOPMENT AND APPLICATION OF A DIRECT RADIOIMMUNOASSAY FOR CORTICOSTERONE [J].
ALDUJAILI, EAS ;
WILLIAMS, BC ;
EDWARDS, CRW .
STEROIDS, 1981, 37 (02) :157-176
[2]  
BENNETT MC, 1991, PSYCHOBIOLOGY, V19, P301
[3]   LONG-TERM POTENTIATION OF HIPPOCAMPAL SYNAPTIC TRANSMISSION AFFECTS RATE OF BEHAVIORAL LEARNING [J].
BERGER, TW .
SCIENCE, 1984, 224 (4649) :627-630
[4]  
Bodnoff S. R., 1992, Society for Neuroscience Abstracts, V18, P534
[5]   CORTICOSTERONE DECREASES THE EFFICACY OF ADRENALINE TO AFFECT PASSIVE-AVOIDANCE RETENTION OF ADRENALECTOMIZED RATS [J].
BORRELL, J ;
DEKLOET, ER ;
BOHUS, B .
LIFE SCIENCES, 1984, 34 (01) :99-105
[6]   THE ANTIDEPRESSANTS FLUOXETINE, IDAZOXAN AND PHENELZINE ALTER CORTICOTROPIN-RELEASING HORMONE AND TYROSINE-HYDROXYLASE MESSENGER-RNA LEVELS IN RAT-BRAIN - THERAPEUTIC IMPLICATIONS [J].
BRADY, LS ;
GOLD, PW ;
HERKENHAM, M ;
LYNN, AB ;
WHITFIELD, HJ .
BRAIN RESEARCH, 1992, 572 (1-2) :117-125
[7]   LONG-TERM ANTIDEPRESSANT ADMINISTRATION ALTERS CORTICOTROPIN-RELEASING HORMONE, TYROSINE-HYDROXYLASE, AND MINERALOCORTICOID RECEPTOR GENE-EXPRESSION IN RAT-BRAIN - THERAPEUTIC IMPLICATIONS [J].
BRADY, LS ;
WHITFIELD, HJ ;
FOX, RJ ;
GOLD, PW ;
HERKENHAM, M .
JOURNAL OF CLINICAL INVESTIGATION, 1991, 87 (03) :831-837
[8]  
CARROLL BJ, 1976, ARCH GEN PSYCHIAT, V33, P1039
[9]  
CIZZA G, 1994, ENDOCRINOLOGY, V134, P1661
[10]   STRESS, FEEDBACK AND FACILITATION IN THE HYPOTHALAMOPITUITARY-ADRENAL AXIS [J].
DALLMAN, MF ;
AKANA, SF ;
SCRIBNER, KA ;
BRADBURY, MJ ;
WALKER, CD ;
STRACK, AM ;
CASCIO, CS .
JOURNAL OF NEUROENDOCRINOLOGY, 1992, 4 (05) :517-526