NUMERICAL-SOLUTION OF THE D=INFINITY HUBBARD-MODEL - EVIDENCE FOR A MOTT TRANSITION

被引:243
作者
GEORGES, A [1 ]
KRAUTH, W [1 ]
机构
[1] ECOLE NORM SUPER,PHYS STAT LAB,F-75231 PARIS 05,FRANCE
关键词
D O I
10.1103/PhysRevLett.69.1240
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a numerical solution of the infinite-dimensional Hubbard model at finite temperature in the paramagnetic phase. The problem reduces to a single-impurity Anderson model supplemented by a self-consistency condition. Using Monte Carlo methods and complete enumeration we determine the imaginary-time Green's function, the density of doubly occupied sites, and the compressibility close to half filling. All three quantities present direct evidence for a Mott insulating phase above a critical value of U.
引用
收藏
页码:1240 / 1243
页数:4
相关论文
共 21 条