INEQUALITIES FOR FREE ENERGY OF CERTAIN MANY-BODY SYSTEMS

被引:3
作者
KLEBAN, P
机构
[1] Brandeis University, Waltham
[2] Brandeis University, Waltham, MA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.22.587
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new application of the Bogoliubov inequality to the compressibility of a quantum or classical nonrelativistic one-component many-body system is derived. For a (two-particle) potential rn, the inequality can be integrated to give simple, power-law upper and lower bounds on the ground-state energy as a function of the density. Analogous results are also valid at finite temperatures and for Lennard-Jones potentials at high densities. © 1969 The American Physical Society.
引用
收藏
页码:587 / +
页数:1
相关论文
共 8 条
[1]  
Bogoliubov N.N., 1962, PHYS ABH SU, V6, P229
[2]  
Bogoliubov N.N., 1962, PHYS ABHANDL SU, V6, P113
[3]   ATOMIC THEORY OF THE 2-FLUID MODEL OF LIQUID HELIUM [J].
FEYNMAN, RP .
PHYSICAL REVIEW, 1954, 94 (02) :262-277
[4]  
LUTTINGER JM, 1966, PROGR THEORET PH S37, P35
[5]   APPLICATION OF SUM RULES TO LOW-TEMPERATURE INTERACTING BOSON SYSTEM [J].
PUFF, RD .
PHYSICAL REVIEW, 1965, 137 (2A) :A406-+
[6]   LONG-WAVELENGTH EXCITATIONS AND GOLDSTONE THEOREM IN MANY-PARTICLE SYSTEMS WITH BROKEN SYMMETRIES [J].
WAGNER, H .
ZEITSCHRIFT FUR PHYSIK, 1966, 195 (03) :273-&
[7]  
WANNIER G, 1958, STATISTICAL PHYSICS
[8]   HIGH-FREQUENCY ELASTIC MODULI OF SIMPLE FLUIDS [J].
ZWANZIG, R ;
MOUNTAIN, RD .
JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (12) :4464-&