A BOUNDARY-VALUE PROBLEM FOR HAMILTON-JACOBI EQUATIONS IN HILBERT-SPACES

被引:16
作者
CANNARSA, P
GOZZI, F
SONER, HM
机构
[1] SCUOLA NORMALE SUPER PISA,I-56126 PISA,ITALY
[2] CARNEGIE MELLON UNIV,DEPT MATH,PITTSBURGH,PA 15213
关键词
D O I
10.1007/BF01447742
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a Hamilton-Jacobi equation in infinite dimensions arising in optimal control theory for problems involving both exit times and state-space constraints. The corresponding boundary conditions for the Hamilton-Jacobi equation, of mixed nature, have been derived and investigated in [19], [2], [5], and [15] in the finite-dimensional case. We obtain a uniqueness result for viscosity solutions of such a problem and then prove the existence of a solution by showing that the value function is continuous.
引用
收藏
页码:197 / 220
页数:24
相关论文
共 17 条
[1]  
AUBIN JP, 1984, APPLIED NONLINEAR AN
[2]   EXIT TIME PROBLEMS IN OPTIMAL-CONTROL AND VANISHING VISCOSITY METHOD [J].
BARLES, G ;
PERTHAME, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (05) :1133-1148
[3]  
BARLES G, 1987, RAIRO-MATH MODEL NUM, V21, P557
[4]  
Cannarsa P., 1989, DIFFERENTIAL INTEGRA, V2, P479
[5]  
CAPUZZODOLCETTA I, IN PRESS T AM MATH S
[6]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[7]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[8]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[9]  
CRANDALL MG, HAMILTON JACOBI EQUA, V4
[10]  
FEDERER H, 1959, T AM MATH SOC, V93, P429