DYNAMICAL CONFINEMENT IN BOSONIZED 2-DIMENSIONAL QCD

被引:3
作者
FERRANDO, A
VENTO, V
机构
[1] UNIV VALENCIA, CSIC, DEPT FIS TEOR, E-46100 BURJASSOT, SPAIN
[2] UNIV VALENCIA, CSIC, INST FIS CORPUSCULAR, E-46100 BURJASSOT, SPAIN
关键词
D O I
10.1103/PhysRevD.49.3044
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the bosonized version of two-dimensional theories nontrivial boundary conditions (topology) play a crucial role. They are inevitable if one wants to describe nonsinglet states. In Abelian bosonization, color is the charge of a topological current in terms of a nonlinear meson field. We show that confinement appears as the dynamical collapse of the topology associated with its nontrivial boundary conditions.
引用
收藏
页码:3044 / 3054
页数:11
相关论文
共 32 条
[1]  
[Anonymous], 1985, ASPECTS SYMMETRY SEL, DOI DOI 10.1017/CBO9780511565045
[2]   THE BOSE FORM OF TWO-DIMENSIONAL QUANTUM CHROMODYNAMICS [J].
BALUNI, V .
PHYSICS LETTERS B, 1980, 90 (04) :407-412
[4]   HADRON SCATTERING IN 2-DIMENSIONAL QCD .1. FORMALISM AND LEADING ORDER CALCULATIONS [J].
BROWER, RC ;
ELLIS, J ;
SCHMIDT, MG ;
WEIS, JH .
NUCLEAR PHYSICS B, 1977, 128 (01) :131-174
[5]  
BROWER RC, 1977, NUCL PHYS B, V128, P537
[6]  
Cheng T. P., 1984, GAUGE THEORY ELEMENT
[7]   RADIATIVE-CORRECTIONS AS ORIGIN OF SPONTANEOUS SYMMETRY BREAKING [J].
COLEMAN, S ;
WEINBERG, E .
PHYSICAL REVIEW D, 1973, 7 (06) :1888-1910
[8]   QUANTUM SINE-GORDON EQUATION AS MASSIVE THIRRING MODEL [J].
COLEMAN, S .
PHYSICAL REVIEW D, 1975, 11 (08) :2088-2097
[9]   MORE ABOUT MASSIVE SCHWINGER MODEL [J].
COLEMAN, S .
ANNALS OF PHYSICS, 1976, 101 (01) :239-267
[10]   THERE ARE NO GOLDSTONE BOSONS IN 2 DIMENSIONS [J].
COLEMAN, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (04) :259-264