SHADOWING OF PHYSICAL TRAJECTORIES IN CHAOTIC DYNAMICS - CONTAINMENT AND REFINEMENT

被引:213
作者
GREBOGI, C
HAMMEL, SM
YORKE, JA
SAUER, T
机构
[1] UNIV MARYLAND,INST PHYS SCI,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
[3] USN CTR SURFACE WARFARE,SILVER SPRING,MD 20903
[4] GEORGE MASON UNIV,DEPT MATH SCI,FAIRFAX,VA 22030
关键词
D O I
10.1103/PhysRevLett.65.1527
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a chaotic system, a noisy trajectory diverges rapidly from the true trajectory with the same initial condition. To understand in what sense the noisy trajectory reflects the true dynamics of the actual system, we developed a rigorous procedure to show that some true trajectories remain close to the noisy one for long times. The procedure involves a combination of containment, which establishes the existence of an uncountable number of true trajectories close to the noisy one, and refinement, which produces a less noisy trajectory. Our procedure is applied to noisy chaotic trajectories of the standard map and the driven pendulum. © 1990 The American Physical Society.
引用
收藏
页码:1527 / 1530
页数:4
相关论文
共 7 条
  • [1] UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS
    CHIRIKOV, BV
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05): : 263 - 379
  • [2] CHOW ST, IN PRESS
  • [3] PSEUDO-ORBIT SHADOWING IN THE FAMILY OF TENT MAPS
    COVEN, EM
    KAN, I
    YORKE, JA
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 308 (01) : 227 - 241
  • [4] Hammel S. M., 1987, Journal of Complexity, V3, P136, DOI 10.1016/0885-064X(87)90024-0
  • [5] NUMERICAL ORBITS OF CHAOTIC PROCESSES REPRESENT TRUE ORBITS
    HAMMEL, SM
    YORKE, JA
    GREBOGI, C
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 19 (02) : 465 - 469
  • [6] CORRELATIONS OF PERIODIC, AREA-PRESERVING MAPS
    MEISS, JD
    CARY, JR
    GREBOGI, C
    CRAWFORD, JD
    KAUFMAN, AN
    ABARBANEL, HDI
    [J]. PHYSICA D, 1983, 6 (03): : 375 - 384
  • [7] IS EVERY APPROXIMATE TRAJECTORY OF SOME PROCESS NEAR AN EXACT TRAJECTORY OF A NEARBY PROCESS
    NUSSE, HE
    YORKE, JA
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 114 (03) : 363 - 379