A RANDOM DISCRETE VELOCITY MODEL AND APPROXIMATION OF THE BOLTZMANN-EQUATION

被引:14
作者
ILLNER, R
WAGNER, W
机构
[1] INST ANGEW ANAL & STOCHAST,O-1086 BERLIN,GERMANY
[2] UNIV VICTORIA,DEPT MATH,VICTORIA V8W 3P4,BC,CANADA
关键词
DISCRETE VELOCITY MODELS; BOLTZMANN EQUATION; SIMULATION METHODS;
D O I
10.1007/BF01053594
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An approximation procedure for the Boltzmann equation based on random choices of collision pairs from a fixed velocity set and on discrete velocity models is designed. In a suitable limit, the procedure is shown to converge to the time-discretized and spatially homogeneous Boltzmann equation.
引用
收藏
页码:773 / 792
页数:20
相关论文
共 14 条
[1]   A CONVERGENCE PROOF FOR NANBU SIMULATION METHOD FOR THE FULL BOLTZMANN-EQUATION [J].
BABOVSKY, H ;
ILLNER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (01) :45-65
[2]  
BABOVSKY H, 1989, EUR J MECH B-FLUID, V8, P41
[3]  
BONY JM, 1991, COMMUN PARTIAL DIFFE
[4]   SHOCK STRUCTURE IN A SIMPLE DISCRETE VELOCITY GAS [J].
BROADWELL, JE .
PHYSICS OF FLUIDS, 1964, 7 (08) :1243-1247
[5]  
Cabannes H., 1987, Complex Systems, V1, P575
[6]   A BOUNDARY-VALUE PROBLEM FOR DISCRETE-VELOCITY MODELS [J].
CERCIGNANI, C ;
ILLNER, R ;
SHINBROT, M .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (04) :889-900
[7]   EXACT-SOLUTIONS OF THE BROADWELL MODEL IN 1+1 DIMENSIONS [J].
CORNILLE, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (08) :1973-1988
[8]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366
[9]  
GREENBERG JM, 1991, MULTIDIMENSIONAL HYP, V29, P140
[10]  
ILLNER R, 1988, SIAM REV, V30, P213